
Problem Set 7
Fall 11

Due: Thursday, 1st December, 2011, 11:00 am before class begins
Please follow the homework format guidelines posted on the class web page:

http://www.cs.uiuc.edu/class/fa11/cs373/

1. [Category: Aliens, Points: 5]

Prove that the problem of deciding whether there are aliens is decidable or undecidable.
More precisely, is there a TM that will take as input "Are there aliens?" and accepts it
if there are aliens, and rejects it if there aren’t any. (The TM rejects all other strings.)

Solution:

Proof: This problem is decidable. Consider two TM TY and TN . TY does nothing but
accepts, and TN does nothing but rejects. Then if there are aliens, TY will be a decider
for this problem; otherwise, TN will be a decider for this problem. In either case, there
must be a decider for the problem (either TY or TN). Hence this problem is decidable.

2. [Category: Undecidability, Points: 20]

Let L be the set of all encoding of Turing machines and words, 〈M, w〉 such that M
when run on w at some point moves right for three consecutive steps. Prove that L is
undecidable.

Solution:

Proof: We will show this by reducing ATM to L. Since ATM is undecidable, it follows
that L is undecidable.

Assume there is a decider M that decides L. The Turing machine Mu deciding ATM

will, on input 〈M, w〉, build a TM Mw such that 〈Mw, w〉 ∈ L iff M accepts w. It will
feed 〈Mw, w〉 to M to figure out whether Mw moves right for three consecutive steps
on w, from which it will deduce whether M accepts w.

Intuitively, we build the TM Mw by extending M with more state to remember how
many consecutive right moves have been made recently (we only remember zero, one or
two steps, the number of states is still finite). If the recent consecutive right moves is
only zero or one, then Mw simulates the behavior of M . If the recent consecutive right
moves are two, then Mw still simulate M if M moves left or does not move; otherwise
Mw will make one left move and then two right moves. When M accepts, Mw simulates
it by making three consecutive moves and then accepts.

Basically Mw simulates M without making three consecutive right moves, but it al-
ways make three consecutive right moves before accepting. Hence Mw makes three

1

http://www.cs.uiuc.edu/class/fa11/cs373/

consecutive right moves on w iff M accepts w. Hence the Turing machine Mu above
decides ATM .

3. [Category: CFG design, Points: 20]

Consider well-formed arithmetic expressions on numbers with four binary operators
{+,−, ∗, /} and one unary operator {−} (negative sign). A number is any string over
{0, 1, . . . 9} (starting with 0s is fine). To avoid ambiguity, consider expressions which
are parenthesized every time an operation is used. Design a context-free grammar for
arithmetic expressions. That is construct a grammar G such that L(G) is the set of
all valid arithmetic expressions.

Here are three examples that should be in L(G):

((((1335 + 21) ∗ 3222) − 431)/565)

(745 − (−((003 − (101 + 134545452)) + (345− 4453))))

(1/0)

Here are five examples that should NOT be in L(G):

(1 + 2 − 3 ∗ 4)

(1 −−(2 + 3))

(2 + 3(

1 + 2

((1) + 2)

After your construction, show the following two strings are valid arithmetic expressions
by explicitly showing every yield step of applying rules in G.

(a) (2 + (−(1 ∗ 3)))

(b) ((4/5) + (5 ∗ (6 + 7)))

Solution:

S → (S + S) | (S − S) | (S ∗ S) | (S/S) | (−S) | N
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | NN

4. [Category: CFG Design, Points: 20]

We want to show that a subset of HTML documents is a context-free language. For
our purposes, we will consider a subset of HTML restricted to the tags: html, body,

ul, li. In particular, the document must have the open tags and close tags matched
properly, and satisfy the following conditions:

2

• The document must start with an open <html> tag and close with </html> and
there should be no other html tag and all text must be contained within these
tags.

• There is only one open body tag (and its matching close tag)

• All ul tags occur within the body block. There can be any number of ul blocks,
and all li must blocks occur within an immediate ul block. A ul block need not
have any li blocks within it.

• There can be text anywhere within the <html> block, between any tags.

• Text is any sequence of a–z, A–Z, and the space character.

Hence such documents start with the html tag followed by some text followed by a
body block. The body block consists of nested ul blocks that have sequences of li
blocks, and text in between the tags.

For example, the following is a well-formed document:
<html> Heading <body> Blah Blah first item second

This is nested at second level</body> </html>

Solution:

S → <html> E <body> B </body> E </html>

B → EB | U B | ǫ
U → EU | U U | B U | ǫ
E → EE | a | · · · | z | A | · · · | Z | ⊔ | ǫ

5. CNF Conversion [Category: Proof., Points: 7+7+6] Consider the grammar G:

S → 0A0 | 1B1 | BB
A → C
B → S | A
C → S | ǫ

(a) First, add a rule S0 → S to G and eliminate ǫ-productions, obtaining G1. Write
down precisely the set of nullable variables, and the resulting grammar G1.

(b) Eliminate any unit productions in G1, obtaining G2. Write down precisely the set
of all transitive unit derivations, and the resulting grammar G2.

(c) Put G2 into Chomsky Normal Form G3.

Solution:

3

(a) First of all, add a new start variable S0 with S0 → S. The set of nullable variables
are {S0, S, A, B, C}. Adding productions that replace each appearance of nullable
variables by ǫ obtains G1:

S0 → S | ǫ
S → 0A0 | 00 | 1B1 | 11 | BB | B
A → C
B → S | A
C → S

(b) The unit rules in G1 are: S0 → S, S → B, A → C, B → S, B → A, C → S. After
elimination we get G2:

S0 → 0A0 | 00 | 1B1 | 11 | BB | ǫ
S → 0A0 | 00 | 1B1 | 11 | BB
A → 0A0 | 00 | 1B1 | 11 | BB
B → 0A0 | 00 | 1B1 | 11 | BB
C → 0A0 | 00 | 1B1 | 11 | BB

(c) We introduce two new rules P → 0, Q → 1 to eliminate mixing rules. Then we
also introduce X → AP, Y → BQ to eliminate long rules:

S0 → PX | PP | QY | QQ | BB | ǫ
S → PX | PP | QY | QQ | BB
A → PX | PP | QY | QQ | BB
B → PX | PP | QY | QQ | BB
C → PX | PP | QY | QQ | BB
X → AP
Y → BQ
P → 0
Q → 1

6. CYK [Category: Comprehension, Points: 20]

Use CYK algorithm to determine whether or not the given string belongs to the gram-
mar. Your answer should include either "yes" or "no" and a chart that you built using
CYK.

You are required to use the CYK algorithm; do not just give a derivation or an argument
as to why the word does not belong to the language.

Determine whether the string (i) aabbbb and (ii) aabaab belong to the language.

4

S −→ AP | AB

E −→ AP | EB | b

P −→ EB

A −→ a

B −→ b

Solution:

aabbbb - yes, aabaab - no.

S,E,P
S,E S,E,P
∅ S,E,P E,P
∅ S,E E,P E,P
∅ S E,P E,P E,P
A A B,E B,E B,E B,E
a a b b b b

∅
∅ ∅
∅ ∅ ∅
∅ ∅ ∅ ∅
∅ S ∅ ∅ S
A A B,E A A B,E
a a b a a b

5

	Homework 0 (Fall 11): Problem Set 7

