Problem Set 7

Fall 11

Due: Thursday, 1st December, 2011, 11:00 am before class begins
Please follow the homework format guidelines posted on the class web page:
http://www.cs.illinois.edu/class/fa11/cs373/

1. [Category: Aliens, Points: 5]

Prove that the problem of deciding whether there are aliens is decidable or undecidable. More precisely, is there a TM that will take as input "Are there aliens?" and accepts it if there are aliens, and rejects it if there aren't any. (The TM rejects all other strings.)
2. [Category: Undecidability, Points: 20]

Let L be the set of all encoding of Turing machines and words, $\langle M, w\rangle$ such that M when run on w at some point moves right for three consecutive steps. Prove that L is undecidable.
3. [Category: CFG design, Points: 20]

Consider well-formed arithmetic expressions on numbers with four binary operators $\{+,-, *, /\}$ and one unary operator $\{-\}$ (negative sign). A number is any string over $\{0,1, \ldots 9\}$ (starting with 0 s is fine). To avoid ambiguity, consider expressions which are parenthesized every time an operation is used. Design a context-free grammar for arithmetic expressions. That is construct a grammar G such that $L(G)$ is the set of all valid arithmetic expressions.
Here are three examples that should be in $L(G)$:
$((((1335+21) * 3222)-431) / 565)$
$(745-(-((003-(101+134545452))+(345-4453))))$
(1/0)
Here are five examples that should NOT be in $L(G)$:

$$
\begin{aligned}
& (1+2-3 * 4) \\
& (1--(2+3)) \\
& (2+3(\\
& 1+2 \\
& ((1)+2)
\end{aligned}
$$

After your construction, show the following two strings are valid arithmetic expressions by explicitly showing every yield step of applying rules in G.
(a) $(2+(-(1 * 3)))$
(b) $((4 / 5)+(5 *(6+7)))$
4. [Category: CFG Design, Points: 20]

We want to show that a subset of HTML documents is a context-free language. For our purposes, we will consider a subset of HTML restricted to the tags: html, body, ul, li. In particular, the document must have the open tags and close tags matched properly, and satisfy the following conditions:

- The document must start with an open <html> tag and close with </html> and there should be no other html tag and all text must be contained within these tags.
- There is only one open body tag (and its matching close tag)
- All ul tags occur within the body block. There can be any number of ul blocks, and all li must blocks occur within an immediate ul block. A ul block need not have any li blocks within it.
- There can be text anywhere within the <html> block, between any tags.
- Text is any sequence of $a-z, A-Z$, and the space character.

Hence such documents start with the html tag followed by some text followed by a body block. The body block consists of nested ul blocks that have sequences of li blocks, and text in between the tags.
For example, the following is a well-formed document:
<html> Heading <body> Blah Blah first item second This is nested at second level</body> </html>
5. CNF Conversion [Category: Proof., Points: $7+7+6]$ Consider the grammar G :

$$
\begin{aligned}
& S \rightarrow 0 A 0|1 B 1| B B \\
& A \rightarrow C \\
& B \rightarrow S \mid A \\
& C \rightarrow S \mid \epsilon
\end{aligned}
$$

(a) First, add a rule $S_{0} \rightarrow S$ to G and eliminate ϵ-productions, obtaining G_{1}. Write down precisely the set of nullable variables, and the resulting grammar G_{1}.
(b) Eliminate any unit productions in G_{1}, obtaining G_{2}. Write down precisely the set of all transitive unit derivations, and the resulting grammar G_{2}.
(c) Put G_{2} into Chomsky Normal Form G_{3}.
6. CYK [Category: Comprehension, Points: 20]

Use CYK algorithm to determine whether or not the given string belongs to the grammar. Your answer should include either "yes" or "no" and a chart that you built using CYK.

You are required to use the CYK algorithm; do not just give a derivation or an argument as to why the word does not belong to the language.
Determine whether the string (i) $a a b b b b$ and (ii) aabaab belong to the language.

$$
\begin{aligned}
& S \longrightarrow A P \mid A B \\
& E \longrightarrow A P|E B| b \\
& P \longrightarrow E B \\
& A \longrightarrow a \\
& B \longrightarrow b
\end{aligned}
$$

