Problem Set 6

Fall 11

Due: Tuesday, 8th November, 2011, 11:00 am before class begins

Please <u>follow</u> the homework format guidelines posted on the class web page:

http://www.cs.illinois.edu/class/fa11/cs373/

1. Reduction à la Rice's Theorem [Category: Proof, Points: 30]

Show the following languages are undecidable. You may *not* simply appeal to Rice's theorem (however, you can *adapt* the proof of Rice's theorem to solve these particular problems).

- (a) $L_{cs373} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ contains the string "CS373".} \}$
- (b) $L_{finite} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is finite.} \}$
- (c) $L_{reject} = \{ \langle M \rangle \mid M \text{ is a TM and } M \text{ rejects all inputs.} \}$

Solution:

(a) We will show this by reducing A_{TM} to L_{cs373} . Since A_{TM} is undecidable, it follows that L_{cs373} is undecidable.

Assume there is a TM/oracle M_{cs373} that decides L_{cs373} .

We build a Turing machine M_u that uses M_{cs373} and decides A_{TM} , as follows.

On input $\langle M, w \rangle$, M_u will build a TM M_w (shown below) such that M_w accepts "CS373" iff M accepts w.

It will feed $\langle M_w \rangle$ to M_{cs373} .

If M_{cs373} accepts M_w , then M_u will halt and accept $\langle M, w \rangle$; otherwise M_u halts and rejects $\langle M, w \rangle$.

What remains is the construction of M_w ; M_u builds M_w as the following TM.

- 1. Input: x
- 2. Erase x and replace it with the constant string w.
- 3. Simulate M on w.
- 4. If M accepts w, then accept; if M rejects w, then reject.

Note that:

If M accepts w, then $L(M_w) = \Sigma^*$, and thus contains "CS373";

If M does not accept w, $L(M_w) = \emptyset$, and thus does not contain "CS373".

Hence M_w accepts "CS373" iff M accepts w.

Hence the Turing machine M_u above decides A_{TM} , proving the reduction. Hence L_{cs373} is undecidable. (b) We will show this by reducing A_{TM} to L_{finite}. Since A_{TM} is undecidable, it follows that L_{finite} is undecidable.
Assume there is a TM/oracle M_{finite} that decides L_{finite}.
We build a Turing machine M_u that uses M_{finite} and decides A_{TM}, as follows.
On input (M, w), M_u will build a TM M_w (shown below) such that L(M_w) is not finite iff M accepts w.
It will feed (M_w) to M_{finite}.
If M_{finite} accepts M_w, then M_u will halt and reject (M, w); otherwise M_u halts

What remains is the construction of M_w ; M_u builds M_w as the following TM.

- 1. Input: x
- 2. Erase x and replace it with the constant string w.
- 3. Simulate M on w.

and accepts $\langle M, w \rangle$.

4. If M accepts w, then accept; if M rejects w, then reject.

Note that:

If M accepts w, then $L(M_w) = \Sigma^*$, and thus is not finite;

If M does not accept $w, L(M_w) = \emptyset$, and thus is finite.

Hence $L(M_w)$ is not finite iff M accepts w.

Hence the Turing machine M_u above decides A_{TM} , proving the reduction. Hence L_{finite} is undecidable.

(c) We will show this by reducing A_{TM} to L_{reject} . Since A_{TM} is undecidable, it follows that L_{reject} is undecidable.

Assume there is a TM/oracle M_{reject} that decides L_{reject} .

We build a Turing machine M_u that uses M_{reject} and decides A_{TM} , as follows.

On input $\langle M, w \rangle$, M_u will build a TM M_w (shown below) such that M_w does not reject all inputs iff M accepts w.

It will feed $\langle M_w \rangle$ to M_{reject} .

If M_{reject} accepts M_w , then M_u will halt and reject $\langle M, w \rangle$; otherwise M_u halts and accepts $\langle M, w \rangle$.

What remains is the construction of M_w ; M_u builds M_w as the following TM.

- 1. Input: x
- 2. Erase x and replace it with the constant string w.
- 3. Simulate M on w.
- 4. If M accepts w, then reject; if M rejects w, then accept.

Note that:

If M accepts w, then $L(M_w) = \Sigma^*$, and thus does not reject all inputs; If M does not accept w, $L(M_w) = \emptyset$, and thus rejects all inputs. Hence M_w does not reject all inputs iff M accepts w. Hence the Turing machine M_u above decides A_{TM} , proving the reduction. Hence L_{reject} is undecidable.