Problem Set 4

Fall 11

Due: Thursday, 20th October, 2011, 11:00 am before class begins

Please follow the homework format guidelines posted on the class web page:

http://www.cs.illinois.edu/class/fa11/cs373/

Also, note that Problem 5 is an extra credit question.

1. [Category: Non-regularity, Points: 30]

Prove the following languages are not regular, from first principles, using the Myhill-Nerode Theorem or using the pumping lemma.

You cannot assume the non-regularity of any language to solve this problem.

(a) $L = \{w \in \{a, b\}^* \mid N_b(w) = 2N_a(w)\}$ is non-regular. $(N_a(w)$ denotes the number of *a*'s in *w*; hence *L* contains all words over $\{a, b\}$ in which the number of *a*'s is precisely twice the number of *b*'s.)

Solution:

Proof using the pumping lemma

Assume L is regular. Then the pumping lemma applies to L. Let p be the number that satisfying the pumping lemma's consequence. Consider the string $s = a^p b^{2p}$. It is clear that $s \in L$ and |s| > p. Now let $x, y, z \in \Sigma^*$ be any three words such that s = xyz, $|xy| \leq p$, and |y| > 0. Then both x and y consist of as; let $y = a^j (j \geq 1)$. Set n = 0. Then $xy^n z = xy^0 z = a^{p-j}b^{2p} \notin L$ as as $N_b(xy^0z) = 2p > 2(p-j) = 2N_a(xy^0z)$. This contradicts the pumping lemma. The contradiction shows that the assumption that L is regular is false. Hence L is not regular.

Proof using Myhill-Nerode Theorem

Let $S = \{a^i \mid i \ge 0\}$. Clearly S is infinite. Let $x = a^i$ and $y = a^j$ be two different elements in S. Without loss of generality, assume that i < j. Now choose $z = b^{2j}$. Then $xz = a^i b^{2j} \notin L$ but $yz = a^j b^{2j} \in L$. Hence [L/x] does not contain z but [L/y] contains z. Hence the suffix languages [L/x] and [L/y] are different, for every $x, y \in S, x \neq y$. Hence there are infinitely many suffix languages for L, and by Myhill-Nerode Theorem, L is not regular.

(b) $L = \{0^{i^2+1} | i \ge 0\}$

Solution:

Proof using the pumping lemma

Assume L is regular. Then the pumping lemma applies to L. Let p be the number that satisfying the pumping lemma's consequence. Consider the string $s = 0^{p^2+1}$. It is clear that $s \in L$ and |s| > p. Now let x, y, z be any three words such that s = xyz, $|xy| \le p$, and $|y| \ge 1$. Let |x| = i, |y| = j, and |z| = k. Then $p^2 + 1 = i + j + k$ and j > 1 and i + j < p. Set n = 2. Then the pumping lemma consequence says that $xy^2 z \in L$. Clearly, the next longer word in L (shortest word in L that is longer than |s|) is of length $(p+1)^2 + 1 = p^2 + 2p + 2$. Now, $|xy^2z| = i + 2j + k = (p^2 + 1) + j < p^2 + 2p + 1$ since j < p. Also, $|xy^2z| > p^2 + 1$, since j > 1. Hence the length of $|xy^2z|$ falls strictly between $p^2 + 1$ and $(p+1)^2 + 1$. So $|xy^2z|$ cannot be of the form $h^2 + 1$, and hence xy^2z / nL . This contradicts the pumping lemma. So L cannot be regular. **Proof using Myhill-Nerode Theorem**

Let $S = \{0^{i^2+1} \mid i \ge 0\}$. Clearly S is infinite. Let $x = 0^{i^2+1}$ and $y = 0^{j^2+1}$ be two different elements in S. Without loss of generality, assume that i < j. Now choose $z = 0^{2i+1}$. Then $xz = 0^{i^2+1}0^{2i+1} = 0^{(i+1)^2+1} \in L$ but $yz = 0^{j^2+1}0^{2i+1} = 0^{j^2+2i+2} \notin L$, since $j^{2} + 1 < j^{2} + 2i + 2 < (j + 1)^{2} + 1.$ Hence $z \in [L/x]$ and $z \notin [L/y]$. Hence the suffix languages [L/x] and [L/y] are different. Hence there are infinitely many suffix languages for L and, by MNT L is not regular.

(c) Consider the following language L over the alphabet $\{0, 1\}$:

$$L = \{wtw \mid w, t \in \{0, 1\}^+\}$$

(Recall, $\{0,1\}^+$ is the set of all binary strings not including ϵ ; i.e. $\{0,1\}^+ =$ $\{0,1\},\{0,1\}^*$.) Thus, 111011 $\in L$, because 111011 = 11.10.11. On the other hand, $10100 \notin L$ because there is no length i > 0 such that the first i symbols are the same as the last i symbols.

Solution:

Proof using the pumping lemma

Assume L is regular.

Then the pumping lemma applies to L.

Let p be the number that satisfying the pumping lemma's consequence.

Consider the string $s = 0^{p}1^{p}10^{p}1^{p}$. It is clear that $s \in L$ because $0^{p}1^{p}10^{p}1^{p} =$ $(0^p 1^p) 1 (0^p 1^p)$. By the pumping lemma, we know that there exist a division s =xyz, $|xy| \leq p$, and $|y| \geq 1$. Hence both x and y consist of 0s, say $x = 0^i$, $y = 0^{j} (j \ge 1)$. By the pumping lemma, $xy^{2}z = 0^{p+j}1^{p}10^{p}1^{p}$ also belongs to L. But this is not true, because for arbitrary $0 < k \le p$, the first k symbols are 0^{k} while the last k symbols are 1^{k} ; for arbitrary k > p, the first k symbols start with more than p 0s, but in the last k symbols, the longest sequence of 0s is only 0^{p} . The contradiction concludes the proof.

Proof using Myhill-Nerode Theorem

Let $S = \{0^i 1^{i1} \mid i > 0\}$. Clearly S is infinite. Let $x = 0^i 1^{i1}$ and $y = 0^j 1^{j1}$ be two different elements in S. Without loss of generality, assume that i < j. Now choose $z = 0^i 1^i$. Then $xz = 0^i 1^i 10^i 1^i \in L$ but $yz = 0^j 1^j 10^i 1^i \notin L$, because it is not of the form wtw for any $w, t \in \Sigma^+$. The latter is true because for arbitrary $0 < k \leq i$, the first k symbols of yz are 0^k while the last k symbols are 1^k (hence leaving no choice for w); and for arbitrary k > i, the first k symbols start with more than i 0s, but in the last k symbols, the longest sequence of 0s is only 0^i . Hence x and y are distinguishable w.r.t. L.

I.e. $z \in [L/x]$ and $z \notin [L/y]$.

Hence [L/x] and [L/y] are different, for every $x, y \in S, x \neq y$.

Hence there are infinitely many suffix languages for L. and by MNT, we L is not regular.

2. [Category: Non-regularity using closure properties, Points: 20]

Prove that the following languages are not regular using *only* closure properties (you cannot use the Pumping Lemma or the MNT technique). You may assume that regular languages are closed under union, intersection, concatenation, Kleene-*, complement, and reverse. The only language you can assume non-regular is $\{0^n1^n \mid n \geq 0\}$.

(a) $L_{eq} = \{w \in \{0,1\}^* \mid N_0(w) = N_1(w)\}$ $(N_0(w)$ denotes the number of 0's in w and $N_1(w)$ denotes the number of 1's in w)

Solution:

Assume L_{eq} is regular. Then by closure properties $A = L_{eq} \cap L(0^*1^*)$ is regular too. Note that all the strings in A must be of the form $0^n 1^n$, where $n \ge 0$. Hence $A = \{0^n 1^n \mid n \ge 0\}$. But we know that this set is not regular and therefore we have got a contradiction. So L_{eq} is not regular.

(b) $L_2 = \{0^{2n}1^{2n} \mid n \ge 0\}$

Solution:

Assume L_2 is regular. Then by closure properties $A = L_2 \cup (\{0\}L_2\{1\})$ is regular too. Now note that all the strings of the form $0^n 1^n$, where $n \ge 0$ are in A(when n is even $0^n 1^n \in L_2$ and when n is odd $0^n 1^n \in (\{0\}L_2\{1\})$), therefore $A = \{0^n 1^n \mid n \ge 0\}$. But we know that this last set is not regular and therefore we have got a contradiction. So L_2 is not regular.

3. [Category: Suffix Language, Points: 20]

- (a) For each state q in the above DFA, give the language accepted from q (i.e. L_q). Also, for each state q, give a string x such that $L_q = \llbracket L/x \rrbracket$.
- (b) Prove that all the languages defined by the states are different: for each pair of states q, q', show that $L_q \neq L_{q'}$, by giving a string that belongs to one language but not the other. Note that you need to give 6 such strings, one for each pair of languages.
- (c) Is this DFA a minimal DFA for the language it accepts? Why?

Solution:

Rubric: 1.5 points for each answer in part a and b; 5 points for c, no partial credit.

- (a) $\llbracket L/\epsilon \rrbracket = L_{p_0} = (a+b)^* c(a+b)^* c(a+b)^* c(a+b)^*$ $\llbracket L/c \rrbracket = L_{p_1} = (a+b)^* c(a+b)^* c(a+b)^*$ $\llbracket L/cc \rrbracket = L_{p_2} = (a+b)^* c(a+b)^*$ $\llbracket L/ccc \rrbracket = L_{p_3} = (a+b)^*$
- (b) $ccc \in L_{p_0}$ but $ccc \notin L_{p_1}$ $ccc \in L_{p_0}$ but $ccc \notin L_{p_2}$ $ccc \in L_{p_0}$ but $ccc \notin L_{p_3}$ $cc \in L_{p_1}$ but $ccc \notin L_{p_2}$ $cc \in L_{p_1}$ but $ccc \notin L_{p_3}$ $c \in L_{p_2}$ but $ccc \notin L_{p_3}$
- (c) Yes, since all suffix languages are disjoint.