Problem Set 4

Fall 11

Due: Thursday, 20th October, 2011, 11:00 am before class begins
Please follow the homework format guidelines posted on the class web page:
http://www.cs.illinois.edu/class/fa11/cs373/
Also, note that Problem 5 is an extra credit question.

1. [Category: Non-regularity, Points: 30]

Prove the following languages are not regular, from first principles, using the MyhillNerode Theorem or using the pumping lemma.
You cannot assume the non-regularity of any language to solve this problem.
(a) $L=\left\{w \in\{a, b\}^{*} \mid N_{b}(w)=2 N_{a}(w)\right\}$ is non-regular. ($N_{a}(w)$ denotes the number of a 's in w; hence L contains all words over $\{a, b\}$ in which the number of a 's is precisely twice the number of b 's.)

Solution:

Proof using the pumping lemma

Assume L is regular. Then the pumping lemma applies to L. Let p be the number that satisfying the pumping lemma's consequence. Consider the string $s=a^{p} b^{2 p}$. It is clear that $s \in L$ and $|s|>p$. Now let $x, y, z \in \Sigma^{*}$ be any three words such that $s=x y z,|x y| \leq p$, and $|y|>0$. Then both x and y consist of as; let $y=a^{j}(j \geq 1)$. Set $n=0$. Then $x y^{n} z=x y^{0} z=a^{p-j} b^{2 p} \notin L$ as as $N_{b}\left(x y^{0} z\right)=2 p>2(p-j)=2 N_{a}\left(x y^{0} z\right)$. This contradicts the pumping lemma. The contradiction shows that the assumption that L is regular is false. Hence L is not regular.

Proof using Myhill-Nerode Theorem

Let $S=\left\{a^{i} \mid i \geq 0\right\}$. Clearly S is infinite. Let $x=a^{i}$ and $y=a^{j}$ be two different elements in S. Without loss of generality, assume that $i<j$. Now choose $z=b^{2 j}$. Then $x z=a^{i} b^{2 j} \notin L$ but $y z=a^{j} b^{2 j} \in L$. Hence $[L / x]$ does not contain z but $[L / y]$ contains z. Hence the suffix languages $[L / x]$ and $[L / y]$ are different, for every $x, y \in S, x \neq y$. Hence there are infinitely many suffix languages for L, and by Myhill-Nerode Theorem, L is not regular.
(b) $L=\left\{0^{i^{2}+1} \mid i \geq 0\right\}$

Solution:

Proof using the pumping lemma

Assume L is regular.
Then the pumping lemma applies to L.

Let p be the number that satisfying the pumping lemma's consequence.
Consider the string $s=0^{p^{2}+1}$. It is clear that $s \in L$ and $|s|>p$.
Now let x, y, z be any three words such that $s=x y z,|x y| \leq p$, and $|y| \geq 1$.
Let $|x|=i,|y|=j$, and $|z|=k$. Then $p^{2}+1=i+j+k$ and $j>1$ and $i+j<p$.
Set $n=2$. Then the pumping lemma consequence says that $x y^{2} z \in L$.
Clearly, the next longer word in L (shortest word in L that is longer than $|s|$) is of length $(p+1)^{2}+1=p^{2}+2 p+2$.
Now, $\left|x y^{2} z\right|=i+2 j+k=\left(p^{2}+1\right)+j<p^{2}+2 p+1$ since $j<p$.
Also, $\left|x y^{2} z\right|>p^{2}+1$, since $j>1$.
Hence the length of $\left|x y^{2} z\right|$ falls strictly between $p^{2}+1$ and $(p+1)^{2}+1$.
So $\left|x y^{2} z\right|$ cannot be of the form $h^{2}+1$, and hence $x y^{2} z \nprec n L$. This contradicts the pumping lemma.
So L cannot be regular.

Proof using Myhill-Nerode Theorem

Let $S=\left\{0^{i^{2}+1} \mid i \geq 0\right\}$. Clearly S is infinite.
Let $x=0^{i^{2}+1}$ and $y=0^{j^{2}+1}$ be two different elements in S.
Without loss of generality, assume that $i<j$.
Now choose $z=0^{2 i+1}$.
Then $x z=0^{i^{2}+1} 0^{2 i+1}=0^{(i+1)^{2}+1} \in L$ but $y z=0^{j^{2}+1} 0^{2 i+1}=0^{j^{2}+2 i+2} \notin L$, since $j^{2}+1<j^{2}+2 i+2<(j+1)^{2}+1$.
Hence $z \in[L / x]$ and $z \notin[L / y]$.
Hence the suffix languages $[L / x]$ and $[L / y]$ are different.
Hence there are infinitely many suffix languages for L and, by MNT L is not regular.
(c) Consider the following language L over the alphabet $\{0,1\}$:

$$
L=\left\{w t w \mid w, t \in\{0,1\}^{+}\right\}
$$

(Recall, $\{0,1\}^{+}$is the set of all binary strings not including ϵ; i.e. $\{0,1\}^{+}=$ $\{0,1\} .\{0,1\}^{*}$.) Thus, $111011 \in L$, because $111011=11.10 .11$. On the other hand, $10100 \notin L$ because there is no length $i>0$ such that the first i symbols are the same as the last i symbols.

Solution:

Proof using the pumping lemma

Assume L is regular.
Then the pumping lemma applies to L.
Let p be the number that satisfying the pumping lemma's consequence.
Consider the string $s=0^{p} 1^{p} 10^{p} 1^{p}$. It is clear that $s \in L$ because $0^{p} 1^{p} 10^{p} 1^{p}=$ $\left(0^{p} 1^{p}\right) 1\left(0^{p} 1^{p}\right)$. By the pumping lemma, we know that there exist a division $s=$ $x y z,|x y| \leq p$, and $|y| \geq 1$. Hence both x and y consist of 0 s , say $x=0^{i}$,
$y=0^{j}(j \geq 1)$. By the pumping lemma, $x y^{2} z=0^{p+j} 1^{p} 10^{p} 1^{p}$ also belongs to L. But this is not true, because for arbitrary $0<k \leq p$, the first k symbols are 0^{k} while the last k symbols are 1^{k}; for arbitrary $k>p$, the first k symbols start with more than $p 0 \mathrm{~s}$, but in the last k symbols, the longest sequence of 0 s is only 0^{p}. The contradiction concludes the proof.

Proof using Myhill-Nerode Theorem

Let $S=\left\{0^{i} 1^{i} 1 \mid i>0\right\}$. Clearly S is infinite. Let $x=0^{i} 1^{i} 1$ and $y=0^{j} 1^{j} 1$ be two different elements in S. Without loss of generality, assume that $i<j$. Now choose $z=0^{i} 1^{i}$. Then $x z=0^{i} 1^{i} 10^{i} 1^{i} \in L$ but $y z=0^{j} 1^{j} 10^{i} 1^{i} \notin L$, because it is not of the form $w t w$ for any $w, t \in \Sigma^{+}$. The latter is true because for arbitrary $0<k \leq i$, the first k symbols of $y z$ are 0^{k} while the last k symbols are 1^{k} (hence leaving no choice for w); and for arbitrary $k>i$, the first k symbols start with more than $i 0 \mathrm{~s}$, but in the last k symbols, the longest sequence of 0 s is only 0^{i}.
Hence x and y are distinguishable w.r.t. L.
I.e. $z \in[L / x]$ and $z \notin[L / y]$.

Hence $[L / x]$ and $[L / y]$ are different, for every $x, y \in S, x \neq y$.
Hence there are infinitely many suffix languages for L. and by MNT, we L is not regular.
2. [Category: Non-regularity using closure properties, Points: 20]

Prove that the following languages are not regular using only closure properties (you cannot use the Pumping Lemma or the MNT technique). You may assume that regular languages are closed under union, intersection, concatenation, Kleene-*, complement, and reverse. The only language you can assume non-regular is $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
(a) $L_{e q}=\left\{w \in\{0,1\}^{*} \mid N_{0}(w)=N_{1}(w)\right\}\left(N_{0}(w)\right.$ denotes the number of 0 's in w and $N_{1}(w)$ denotes the number of 1 's in w)

Solution:

Assume $L_{e q}$ is regular. Then by closure properties $A=L_{e q} \cap L\left(0^{*} 1^{*}\right)$ is regular too. Note that all the strings in A must be of the form $0^{n} 1^{n}$, where $n \geq 0$. Hence $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. But we know that this set is not regular and therefore we have got a contradiction. So $L_{e q}$ is not regular.
(b) $L_{2}=\left\{0^{2 n} 1^{2 n} \mid n \geq 0\right\}$

Solution:

Assume L_{2} is regular. Then by closure properties $A=L_{2} \cup\left(\{0\} L_{2}\{1\}\right)$ is regular too. Now note that all the strings of the form $0^{n} 1^{n}$, where $n \geq 0$ are in A (when n is even $0^{n} 1^{n} \in L_{2}$ and when n is odd $0^{n} 1^{n} \in\left(\{0\} L_{2}\{1\}\right)$), therefore
$A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. But we know that this last set is not regular and therefore we have got a contradiction. So L_{2} is not regular.
3. [Category: Suffix Language, Points: 20]

(a) For each state q in the above DFA, give the language accepted from q (i.e. L_{q}). Also, for each state q, give a string x such that $L_{q}=\llbracket L / x \rrbracket$.
(b) Prove that all the languages defined by the states are different: for each pair of states q, q^{\prime}, show that $L_{q} \neq L_{q^{\prime}}$, by giving a string that belongs to one language but not the other. Note that you need to give 6 such strings, one for each pair of languages.
(c) Is this DFA a minimal DFA for the language it accepts? Why?

Solution:

Rubric: 1.5 points for each answer in part a and $\mathrm{b} ; 5$ points for c , no partial credit.
(a) $\llbracket L / \epsilon \rrbracket=L_{p_{0}}=(a+b)^{*} c(a+b)^{*} c(a+b)^{*} c(a+b)^{*}$
$\llbracket L / c \rrbracket=L_{p_{1}}=(a+b)^{*} c(a+b)^{*} c(a+b)^{*}$
$\llbracket L / c c \rrbracket=L_{p_{2}}=(a+b)^{*} c(a+b)^{*}$
$\llbracket L / c c c \rrbracket=L_{p_{3}}=(a+b)^{*}$
(b) $c c c \in L_{p_{0}}$ but $c c c \notin L_{p_{1}}$
$c c c \in L_{p_{0}}$ but $c c c \notin L_{p_{2}}$
$c c c \in L_{p_{0}}$ but $c c c \notin L_{p_{3}}$
$c c \in L_{p_{1}}$ but $c c c \notin L_{p_{2}}$
$c c \in L_{p_{1}}$ but $c c c \notin L_{p_{3}}$
$c \in L_{p_{2}}$ but $c c c \notin L_{p_{3}}$
(c) Yes, since all suffix languages are disjoint.

