Problem Set 4

Fall 11

Due: Thursday, 20th October, 2011, 11:00 am before class begins
Please follow the homework format guidelines posted on the class web page:

> http://www.cs.illinois.edu/class/fa11/cs373/

Also, note that Problem 5 is an extra credit question.

1. [Category: Non-regularity, Points: 30]

Prove the following languages are not regular, from first principles, using the MyhillNerode Theorem or using the pumping lemma.
You cannot assume the non-regularity of any language to solve this problem.
(a) $L=\left\{w \in\{a, b\}^{*} \mid N_{b}(w)=2 N_{a}(w)\right\}$ is non-regular. ($N_{a}(w)$ denotes the number of a 's in w; hence L contains all words over $\{a, b\}$ in which the number of a 's is precisely twice the number of b 's.)
(b) $L=\left\{0^{i^{2}+1} \mid i \geq 0\right\}$
(c) Consider the following language L over the alphabet $\{0,1\}$:

$$
L=\left\{w t w \mid w, t \in\{0,1\}^{+}\right\}
$$

(Recall, $\{0,1\}^{+}$is the set of all binary strings not including ϵ; i.e. $\{0,1\}^{+}=$ $\{0,1\} .\{0,1\}^{*}$.) Thus, $111011 \in L$, because $111011=11.10 .11$. On the other hand, $10100 \notin L$ because there is no length $i>0$ such that the first i symbols are the same as the last i symbols.
2. [Category: Non-regularity using closure properties, Points: 20]

Prove that the following languages are not regular using only closure properties (you cannot use the Pumping Lemma or the MNT technique). You may assume that regular languages are closed under union, intersection, concatenation, Kleene-*, complement, and reverse. The only language you can assume non-regular is $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
(a) $L_{e q}=\left\{w \in\{0,1\}^{*} \mid N_{0}(w)=N_{1}(w)\right\}\left(N_{0}(w)\right.$ denotes the number of 0 's in w and $N_{1}(w)$ denotes the number of 1 's in w)
(b) $L_{2}=\left\{0^{2 n} 1^{2 n} \mid n \geq 0\right\}$
3. [Category: Suffix Language, Points: 20]

(a) For each state q in the above DFA, give the language accepted from q (i.e. L_{q}). Also, for each state q, give a string x such that $L_{q}=\llbracket L / x \rrbracket$.
(b) Prove that all the languages defined by the states are different: for each pair of states q, q^{\prime}, show that $L_{q} \neq L_{q^{\prime}}$, by giving a string that belongs to one language but not the other. Note that you need to give 6 such strings, one for each pair of languages.
(c) Is this DFA a minimal DFA for the language it accepts? Why?
4. [Category: DFA Minimization, Points: 20]

Minimize the above DFA using the partition refinement technique (see lecture notes). Illustrate the partition at every step clearly. Do not just give a minimized DFA.
5. [Category: Extra Credit, Points: 20]

Let $\Sigma=\{a, b\}$ and let $L \subseteq \Sigma^{*}$ be a regular language.
Let L^{\prime} be the set of words w such that changing one letter in w (from a to b or b to a) results in a word in L. I.e. L is the language of words that's exactly different from some word in L on one letter.
More precisely, $L^{\prime}=\left\{w a w^{\prime} \mid w b w^{\prime} \in L\right\} \cup\left\{w b w^{\prime} \mid w a w^{\prime} \in L\right\}$.
Prove that L^{\prime} is regular.

