Problem Set 2

Fall 11

Due: 27th September, 2011, 11:00 am before class begins
Please follow the homework format guidelines posted on the class web page:

> http://www.cs.illinois.edu/class/fa11/cs373/

Also, note that Problem 6 is an extra credit question.

1. [Category: NFA Comprehension, Points: 20]

Consider the following NFA M.

(a) Formally show that M accepts the string $w_{1}=a b a a a b$ and string $w_{2}=b a b a a b$.
(b) Give a formal definition of the language that M recognizes. Briefly describe why M recognizes it.
2. [Category: NFA Construction, Points: 20]

Construct a non-deterministic finite automata that accepts the language $\{01,012\}^{*}$ over the alphabet, $\{0,1,2\}$. Your automata should contain only three states.

Hint: Think nondeterminism, and ϵ is your friend.
3. [Category: Construction, Points: 20]

For a string w, the reverse of w is defined as the string obtained by reading s from right to left, denoted by w^{-1}. For example, if $w=a b c$, then $w^{-1}=c b a$; if $w=a b a b$, then $w^{-1}=b a b a$.

For a language L, the reverse of L is defined as the language

$$
\operatorname{reverse}(L)=\left\{w^{-1} \mid w \in L\right\}
$$

Let $A=\left\{Q, \Sigma, \delta, q_{0}, F\right\}$ be a DFA accepting L, construct an NFA B with no more than $|Q|+1$ states that will accept reverse (L). Give the formal definition of B (in tuple notation, no diagram). You should also argue how/why this NFA works (intuitive explanation is enough).
4. [Category: Regular Expressions, Points: $4+4+4+8$]

Give a regular expression for each of the following languages; the alphabet is $\{a, b\}$.

- The set of all words that end with a b.
- The set of all words that begin with $a a$ and end with $a b$.
- The set of all words such that every occurrence of a is immediately followed by a b.
- The set of all words such that the number of changes from a to b is the same as the number of changes from b to a when read left to right.
(E.g., aabbbabbbba is in the language, as there are two places where a 's change to b 's and two places where b 's change to a 's; however, $a a b b b a b$ is not in the language as a 's change to b 's twice, while b 's change to a 's only once).

5. [Category: NFA to DFA Conversion, Points: 20]

Convert the following NFA to a DFA using the subset construction, and show the state diagram.

You can check your answer (if you wish) by feeding a DFA to the website:

```
http://pub.ist.ac.at/automata_tutor/solve?pid=16
```

However, the site does not check if you are describing a DFA; also note that you will lose points if you do not follow the subset construction.
6. [Category: Extra Credit:, Points: 20]

Give a language L over the alphabet $\Sigma=\{a, b\}$ such that any DFA accepting L requires at least 3 final states. Prove that the language L you give has this property.

