Problem Set 0

Fall 11

Due: Tuesday, September 6th, in class, before class begins.
Please follow the homework format guidelines posted on the class web page:
http://www.cs.illinois.edu/class/fa11/cs373/
You must work on this problem set alone (groups are not allowed).
Consult the following:

- Sipser Chapter 0.
- Chapters $1,2,3$ of Discrete Mathematics by Chen (at http://rutherglen.science.mq.edu.au/wchen/lndmfolder/lndm.html)
- Lecture on Thursday, August 25th.

1. [Category: Notation, Points: 20]

Answer each of the following with "true", "false" or "wrong notation." Follow the notations in Sipser. $\{\ldots\}$ is used to represent sets and not multisets or anything else.
a) $\{a, b\} \cup\{a, b, c, d\}=\{a, b, c, d\}$
b) $\{a, b\} \cap\{c, d\}=\varnothing$
c) $\{a, b\} \cap\{c, d\}=\{\varnothing\}$
d) $\{a, b\} \backslash\{b, c\}=\{a, c\}$
e) $\{a, b\} /\{b, c\}=\{a\}$
f) $\varnothing \in\{a, b, c\}$
g) $\varnothing \subseteq\{a, b, c\}$
h) $\varnothing \in \varnothing$
i) $\varnothing \subseteq \varnothing$
j) $\}=\{\varnothing\}$
k) $\{a\} \subseteq\{\varnothing, a, b\}$
l) $\{a\} \subseteq\{a,\{a\},\{ \}\}$
m) $a \subseteq\{a,\{a\},\{ \}\}$
n) $\{a\} \in\{a,\{a\},\{ \}\}$
o) $a \in\{a, b,\{ \}\}$
p) $\{a\} \times\{b, c\}=\{(b, a),(c, a)\}$
q) $\{a\} \times\{b, c\}=\{a, b\} \times\{c\}$
r) $|\{a, b\} \times\{c, d\}|=4$
s) $|\operatorname{powerset}(\{a, b, c\})|=3$
t) $\left|\{a, b\}^{3}\right|=3$

Solution:

a) $\{a, b\} \cup\{a, b, c, d\}=\{a, b, c, d\}$ true
b) $\{a, b\} \cap\{c, d\}=\varnothing$ true
c) $\{a, b\} \cap\{c, d\}=\{\varnothing\}$ false
d) $\{a, b\} \backslash\{b, c\}=\{a, c\}$ false
e) $\{a, b\} /\{b, c\}=\{a\}$ wrong notation; however, everyone gets points for this.
f) $\varnothing \in\{a, b, c\}$ false
g) $\varnothing \subseteq\{a, b, c\}$ true
h) $\varnothing \in \varnothing$ false
i) $\varnothing \subseteq \varnothing$ true
j) $\}=\{\varnothing\}$ false
k) $\{a\} \subseteq\{\varnothing, a, b\}$ true
l) $\{a\} \subseteq\{a,\{a\},\{ \}\}$ true
m) $a \subseteq\{a,\{a\},\{ \}\}$ wrong notation
n) $\{a\} \in\{a,\{a\},\{ \}\}$ true
o) $a \in\{a, b,\{ \}\}$ true
p) $\{a\} \times\{b, c\}=\{(b, a),(c, a)\}$ false
q) $\{a\} \times\{b, c\}=\{a, b\} \times\{c\}$ false
r) $|\{a, b\} \times\{c, d\}|=4$ true
s) $|\operatorname{powerset}(\{a, b, c\})|=3$ false
t) $\left|\{a, b\}^{3}\right|=3$ false
2. [Category: Relations, Points: 20]

Let $A=\{a, b, c\}$. Answer each of the following statements about relation on a set A with true or false. Explain your answer.
a) The relation $R=\{(a, b),(b, a)\}$ is symmetric and reflexive.
b) The relation $R=\{(a, a),(b, b),(c, c)\}$ is not symmetric and reflexive.
c) The relation $R=\{(a, b),(b, c),(c, a)\}$ is symmetric and transitive.
d) The relation $R=\{(a, b),(a, c),(a, a)\}$ is reflexive and transitive.
$e)$ The relation $R=\{(a, a),(b, b),(c, c)\}$ is symmetric, reflexive, and transitive.

Solution:

a) The relation $R=\{(a, b),(b, a)\}$ is symmetric and reflexive. false, it's not reflexive
b) The relation $R=\{(a, a),(b, b),(c, c)\}$ is not symmetric and reflexive. false, it's symmetric
c) The relation $R=\{(a, b),(b, c),(c, a)\}$ is symmetric and transitive. false, it's not symmetric
d) The relation $R=\{(a, b),(a, c),(a, a)\}$ is reflexive and transitive. false, it's not reflexive
$e)$ The relation $R=\{(a, a),(b, b),(c, c)\}$ is symmetric, reflexive, and transitive. true

Identify whether the following relations are equivalence relations. If not, state one property of equivalence relations that does not hold (reflexive, symmetric, transitive).
(f) $R=\{(a, b): a=b\}$ on the set \mathbb{N}.
(g) $R=\{(a, b): a<b\}$ on the set \mathbb{N}.
(h) $R=\{(a, b): a-b$ is even $\}$ on the set \mathbb{N}.
(i) $R=\{(a, b): a+b$ is odd $\}$ on the set \mathbb{N}.
(j) $R=\left\{(a, b): a^{2}=b^{2}\right\}$ on the set \mathbb{Z}.

Solution:

(f) $R=\{(a, b): a=b\}$ on the set \mathbb{N}. true
(g) $R=\{(a, b): a<b\}$ on the set \mathbb{N}. false, not symmetric, not reflexive
(h) $R=\{(a, b): a-b$ is even $\}$ on the set \mathbb{N}. true, $\{2 k\},\{2 k-1\} \forall k \in \mathbb{N}$
(i) $R=\{(a, b): a+b$ is odd $\}$ on the set \mathbb{N}. false, not reflexive
(j) $R=\left\{(a, b): a^{2}=b^{2}\right\}$ on the set \mathbb{Z}. true
3. [Category: Functions, Points: 10]

Determine whether each of the following functions is one-to-one or onto or both or neither. (Answers could be of the form "one-to-one but not onto" or "neither one-toone nor onto", etc.)
a) $f_{1}: \mathbb{N} \rightarrow \mathbb{N}: x \mapsto x+1$
b) $f_{2}: \mathbb{Z} \rightarrow \mathbb{Z}: x \mapsto 2 x+1$
c) $f_{3}: \mathbb{N} \rightarrow \mathbb{N}: x \mapsto x^{2}$
d) $f_{4}: \mathbb{Z} \rightarrow \mathbb{Z}: x \mapsto x^{2}$
e) $f_{5}: \mathbb{R} \rightarrow \mathbb{Z}: x \mapsto\lfloor x\rfloor$

Solution:

(a) one-to-one, not onto
(b) one-to-one, not onto
(c) one-to-one, not onto
(d) not one-to-one, not onto
(e) not one-to-one, onto
4. [Category: Logic, Points: 20]

Let $\Sigma=\{a, b, \ldots, z\}$. A finite sequence of symbols chosen from the alphabet Σ can be formally defined as a partial function pos : $\mathbb{N} \rightarrow \Sigma$, such that $\operatorname{pos}(n)$ is defined if and only if n does not exceed the length of the sequence. For example, the sequence $a b c$ can be defined as $\operatorname{pos}(1)=a, \operatorname{pos}(2)=b, \operatorname{pos}(3)=c$, and $\operatorname{pos}(n)=$ undef for all $n>3$.

If we write a first order logic (FOL) sentence over the above notations, it formally describes a property of finite sequences. For example, the sentence $\operatorname{pos}(5)=$ undef says that the 5th position of the word is undefined, and hence the length of the sequence is less than 5. Also, the sentence $" \exists n \in \mathbb{N}(\operatorname{pos}(n)=a \vee \operatorname{pos}(n)=b \vee \operatorname{pos}(n)=$ undef $) "$ says that the sequence is entirely made up of a ' and b 's only.
Translate each of the following formal descriptions into an informal description as simple/natural as possible, e.g., using a short English sentence.
a) $\operatorname{pos}(3) \neq$ undef $\wedge \operatorname{pos}(4)=$ undef
b) $\forall n \in \mathbb{N} \cdot \operatorname{pos}(n) \neq a$
c) $\exists n \in \mathbb{N} \cdot \operatorname{pos}(n)=a \wedge \operatorname{pos}(n+1)=$ undef
d) $\nexists n \in \mathbb{N} \cdot \operatorname{pos}(n)=a \wedge \operatorname{pos}(n+1)=a$
e) $\forall n \in \mathbb{N} \cdot \operatorname{pos}(n)=a \rightarrow \operatorname{pos}(n+1)=b$

Solution:

a) "the length of the sequence is $3 . "$
$b)$ "there is no ' a ' in the sequence."
c) "the last character in the sequence is ' a '."
d) "there is no subsequence ' $a a$ '."
$e)$ "Every ' a ' in the sequence is followed by a ' b '."

Translate each of the following English statements into a first-order logic sentence.
(f) "the length of the sequence is at least 7."
(g) "the sequence consists of purely a 's."
(h) "the sequence starts with ' $a b$ '."
(i) "every odd position in the sequence is an ' a '."
(j) "the sequence contains a contiguous subsequence of the form ' a ? c ', where '?' indicates any single character."

Solution:

a) $\operatorname{pos}(7) \neq$ undef
b) $\forall n \in \mathbb{N} \cdot \operatorname{pos}(n)=a \vee \operatorname{pos}(n)=$ undef
c) $\operatorname{pos}(1)=a \wedge \operatorname{pos}(2)=b$
d) $\forall n \in \mathbb{N} \cdot \operatorname{pos}(2 n-1)=a \vee \operatorname{pos}(2 n-1)=$ undef
e) $\exists n \in \mathbb{N} \cdot \operatorname{pos}(n)=a \wedge \operatorname{pos}(n+2)=c$

