Threads

Threads

* Processes
— Created with fork()
— Expensive to create, manage, and context switch

* Threads

— “Light Weight Processes”
— Every process already has at least one!

* Threads are the “engine” inside a process.

Processes vs. Threads

Process 1 Process 1 Process 1 Process
\
N N L J
User)
space
I hread Thread
l:;::;el { Kernel Karnel
(a) (b)

e (a): Three processes, one thread /process
* (b): One process, three threads

Processes vs. Threads

* Processes are identified by a unique PID.
— Threads are identified by a Thread ID (T1D).
Each thread in a process has a unique TID, not PID.

‘&:P cesses each have their own address space.

Each thread in a process shares the same address
space. (Everyone has access to the same global
variables — race condition!)

Processes vs. Threads

* Processes have separate file descriptors.
— Threads within a process share file descriptors.

* Processes are created with fork(), duplicating
the entire process.

— Threads are created with pthread_create(), which
starts the thread at the beginning of a function.

Threads are everywhere!

* Consider a variety of processes:
— Game: Diablo Ill, 1 process, 42 threads
— Browser: Firefox, 1 process, 36 threads
— Office: PowerPoint, 1 process, 8 threads
— SSH: PuTTY, 1 process, 4 threads

Image Mame ’ User Name OCPU Memory (... Threads 1/0 Road Dyten /O Wrate Dyten IJO Other Bytes Descrpbion

R e 01 231,532 K “2 RA, 540,966 27,046 30,705 Owbie I

frefox exe *32 01 292,27 % B 20,17%,812,348 11,992,3%0,919 4,494,454, 768 Frefox

POWERPINT EX *32 00 28MK s I %7 620,632 64,590 Morosoft Offce PowerPo
putty. exe *32 00 LA K - 27,900 o 20,932 S5M, Teinet and Rlogn o

What are threads used for?

Kernel

W’ -&D‘Sk
Q: What if this is all done by one thread?

What are threads used for?

Web server process

}C)—D 4:3?/4;&:
= ST

Y

| Dispatcher thread)(—
What Would - 2? l Worker thread

happen if
this were
single-

ﬁ Web page cache

threaded?

Kernel

Network
connection

User
> space

Kernel
space

Things commonly done in separate
threads...

 GUI

— If a blocking operation occurs on the GUI threads,
the GUI becomes unresponsive to user input.

* Net king 1/O
oo =P (cad ()

— Long, blocking operations

Threads for computation...

 Each thread may run on a separate CPU.

— Allows for multiple CPUs (“cores”) to work
together to accomplish a task.

— Allows for a single server to handle multiple
simultaneous requests.

— Speedup: The factor that a process speeds up
wATEen running on multiple cores.

Speedup

* Mathematically defined: T
S, = —
P '1;,

— Sp: Speed-up given P processors.

— T,: Time a given process takes torunon 1
processor.

— Tp: Time a given process takes torunon P

processors. 8 g

* Ideal Speedup: S, =P 4
—

Time
30s

OE_E IR A R S S R
1 2 3 a 5 6 7 8 9 10

Number of Threads

R S S e S N s sy ST
05— ——@ —— oS T T T T T T T T T
' ' - ' ! N ' ' ' '
_____ [B [J5° NN S RNpEpp Sy SN [PEpEpRpEY R
B O N e R SR TR R S
_____ [N N : - '
- ‘ - ’ ' ' A [E—— LI] . L -
- 1 —— W —— - Y - -y ! . H s g
: : : : ' : : : :
I ——— . - ———— - - - :, _1 _____ ccca= becccbecccabea-
. .J ' ' ! ! ' '
ISS —————— ‘ ————————— '.L———-‘-———:———:— ————————
1]]
S T DT B s e e el et
: : '. ' ' ' ']
‘—-—"_'l _____ “ -~ -0————: K -——:— : -
QU1 IO SO SO IO WA S s e S
1)
R - 1 - - R W - !
- ' 1 ' '
: : ' L] 1
1 2 3 4 S 6 7 8 9 10

Number of Threads

Speedup

p--v--r----L--L-.*--

J
|
|
|
I

|
|
|
rllWllrllllLl
|

| |
|

|
|
|
- -
I
I
|

|
— | | |
| | | |
1
I

'
'
-—— =

|
|
|
|
- csvssdesdesbonpunhes
_ =
|
|

'
|
|
|

|
|
|
-
[
|
i
|
decsbeackad
1) 1 ! | |
T I T I |
| [| P | | |
| — | | | | — | | |
[N TP SRR L O VRS U SR S N
| |] |) | ' |
[_ P | | | | |
[| | [| N [
I | ' I | | [
wnu_navoorluouuuo_ou+uo o
| | I | i
1 “ | 1o 1 _ [1
| | B |
N | | I |
| [| P |
tofecpecpoopeqeadecgecpecpocpad
| I | | P _ |
| | | | ' |
b
!]
4||~||1||1||1|J|| et Tk
|
|
|
|

vl - -

| |
| |
| |
| |
- -
| |
| |
I |
I |
||T|L||L||L||»||vllrlnrnLnlLln.
| |
| |
| |
| |
daad
| |
| |
| |
1 |
| |

ime

308 |— — —
15| = =

10

Number of Threads

Speedup

p--v--r----L--L-.*--

J
|
|
|
I

|
|
|
rllWllrllllLl
|

| |
|

|
|
|
- -
I
I
|

|
— | | |
| | | |
1
I

'
'
-—— =

|
|
|
|
- csvssdesdesbonpunhes
_ =
|
|

'
|
|
|

|
|
|
-
[
|
i
|
decsbeackad
1) 1 ! | |
T I T I |
| [| P | | |
| — | | | | — | | |
[N TP SRR L O VRS U SR S N
| |] |) | ' |
[_ P | | | | |
[| | [| N [
I | ' I | | [
wnu_navoorluouuuo_ou+uo o
| | I | i
1 “ | 1o 1 _ [1
| | B |
N | | I |
| [| P |
tofecpecpoopeqeadecgecpecpocpad
| I | | P _ |
| | | | ' |
b
!]
4||~||1||1||1|J|| et Tk
|
|
|
|

vl - -

| |
| |
| |
| |
- -
| |
| |
I |
I |
||T|L||L||L||»||vllrlnrnLnlLln.
| |
| |
| |
| |
daad
| |
| |
| |
1 |
| |

ime

308 |— — —
15| = =

10

Number of Threads

| 127, 4%) %43

Real Results!)

w
O

MacBook Air (2 cores) s

25 S linux.ews (8 cores) =@
g fhcen = 5% 1>
é’ 15 - + —+ —
T = T’q
5 —— o -
0 | 1 | 1 1 1 |
I 2 3 4 5 6 7 8

Number of threads

Real Results!

acBook Air (2 cores) sje—
linux.ews (8 cores) =——@-—
Ideal

Speedup

O - N W & U0 0 N

Number of threads

Using Threads

Using Threads

* Making a traditional function call:

mu\'('?mng program

processfd(); _,]

Called function

*—> Thread of execution

Using Threads

* Launching a thread:

pthread_create();

-——--)

*—-7>

Thread creation

Thread of execution

Using Threads

e Just like normal function calls, each function
gets its own stack frame!

— 100 threads launch function foo(): 10

frames o\[2\) [\‘/-.
Eib(n) {3 4

[4 \‘
2 ((m‘“U)\m
& £ n=2)

. (o)

_xh\

sing Threads

Per Process Items Per Thread Items
Address space/ Program cou nter—
Global variables — Registers «~

Open files— Stack

Child processes ~ State

Pending alarms
Signals and signal handle
Accounting information

Using Threads
1)}

Platform fork() pthread_create()

real

AMD 2.3 GHz Opteron (16 cpus) .0 12.5 0.2 1.2
AMD 2.4 GHz Opteron (8 cpus) 2.2 15.7 0.3 1.3
IBM 4.0 GHz POWERSG (8 cpus) 9.5 0.6 8.8 1.6 0.1 0.4
IBM 1.9 GHz POWERS p5-575 (8 cpus) 64.2 30.7 27.6 g 0.6 ls
IBM 1.5 GHz POWERA4 (8 cpus) lI 48.6 47.2 1.0 1.5
INTEL 2.4 GHz Xeon (2 cpus) @ TR~ @ 0.7 0.9
INTEL 1.4 GHz Itanium2 (4 cpus) 54.5 1.1 22.2 2.0 1.2 0.6
et e/ A Bl oo foc Lhog A utorks b/ pt b cads.

Thnbngs reflect SO,000 geocess /At hread
Creatiomn, were performed with the time otilty, and wnits are in s ocombs, no optimbeat kon flags .

Creating a Thread

int pthread create (pthread t* tid, pthread attr t*
attr, void* (child main), void* argqg)
* SPawm a new posix thread
* Parameters:
— tid:
* Unique thread identifier returned from call

— attr:
* Use NULL [for default values]

#include <pthread.h>
#include <stdio.h> Example #1

#include <stdlib.h> K———"

oid *data)

*s\n", data) ;

int main(int argc, char *argvl(]

pthread_ t mythr :
int result;

"Let it sn "7
= road_cr.at.(&mythr.ad,1’9&L, data) ;
_———print "pthread create () returned %d\n",

Three ways to exit a process...

« A call to exit()
* The “main” function returns a value

« All threads complete executing

Waiting for Threads:
—=> pthread_ join()

.

int pthread join(pthread t threjd, void*~* retvay
* Suspend calling thread until target thread ter S

* Returns
— 0D on success
— Error code on failure

* Parameters
- thread:
* Target thread identifier

- retval:

* The value passed to pthread exit () by the terminating thread is made
available in the location referenced by retval

#include <pthread.h>
#include <stdio.h> Example #2

#include <stdlib.h>

void *snow (void *data)
'?1’ printf ("Let it snow ... %s\n", data) ;
return NULL:;

int main(int argc, char *argv([])

{
pthread_ t mythread;
int result;
char *data = "Let it snow.";
result = pthread create (&mythread, NULL, snow, data) ;
printf ("pthread creat d sd\n", result) ;
pthread join (mythredd, NULL) ;
return O; -

#include <pthread.h>
#include <stdio.h> Ex ple #3

#include <stdlib.h> QT):I;\J)
—

void *snow (void *data)

{ -
Aint snow = 4; SAJ (4/ [
printf (" L snow ... %s\n", data) ;

/?

return @
}

int main(int argc, char *“arg

{

pthread t mythread;
int result;

char *data = "Let it snc
result = pthread create(
printf ("pthread create(

d, NULL, snow, data) ;
d sd\n", result) ;

void
pthre>d
o ﬁ printf ("retu

return 0;

#include <pthread.h>
#include <stdio.h> Example #4

#include <stdlib.h> | "'(QN)

\(roid *snow (void *data) Ras = p &QUQ_‘)"
il P snaw = . : «/ AN ThaT
Si12e ‘“*“) ©

G%f:g\)tt(L&Ie Lt show ... %s\n", data) ; qu m%

return .3now.
(SLoBNCS SA T

(]

}

int main(int argc, ch
{

*argvl(l)

pthread_ t myt
int result;
char *data = ' t it snow.":;

result = pthre | _create (&mythread, NULL, snow, data) ;
printf ("pthread \¢create () returned %d\n", result) ;

ead;

void *ret;
pthread jo0in (mythread, ret) ;
int!((:.tu n value: %d\n", *((int *)ret)):

(66 boed

florcaw
C’,\@‘/M'Fhfe/aa's VS. ProcessesL

Get copies of all variables Share global variables

Share the same process
Get new process IDs ID but have unique
thread ID

May communicate with
return value or
carefully shared
variables

Must communicate explicitly,
e.g., use pipes or small integer
return value

Concurrent Concurrent

Kernel threads may be
executed
simultaneously

May be executed
simultaneously

A few other calls...

pthread_exit(): Exits the current thread.
pthread_self(): Returns the TID of the current
thread. | = oc ,7) OJ ()

v

pthread_detatch(): Frees thread-related
memory without needing to _join().

— Use either _detatch() or _join(), not both!

Orphans and Zombies

Orphan

Often used in relation to a process, an
orphaned processes is one where the parent
has terminated by the child continues.

— Re-parented by the init process.

— Will have the PPID of 1.

Zombie

A zombie process or z-ombie thread is a
thread who has terminated but needs to
return state information back to its parent.
— Done via wait() and waitpid() for processes.
— Done via pthread_join() for threads

pthread— dedat h(|

