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Page Tables So Far

* Virtual Addresses are made up of two
identifiable parts:

— Page Number
— Page Offset

» Page Tables provide translation from a Virtual
Address to a Physical Address.

— Made up of a table of Page Table Entries (PTEs).



Page Tables So Far

 Each PTE consists of, in part:
— Resident Bit: Is it in RAM or on disk?

— Physical Page Number: Where is it located in RAM
or on disk?

* When a page needs to be evicted from RAM
(to disk) for another page to be loaded, there
are five algorithms:

— Optimal, FIFO, LRU, LFU, and MRU



Page Fault

 The term Page Fault describes the event when
a virtual memory address is accessed and is

not in resident in RAM.

Virtual Page Number: Ox38940 >
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Virtual Memory Address: Ox389540392
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Page Fault

* When a Page Fault occurs:

— Check if there is a free page of memory in RAM.
* If so, load the data to the empty page in RAM.

* If not, invoke a page replacement algorithm.
— FIFO, LRU, LFU, MRU, ...
— What does x86 processers use?



Reference Bit

e A second bit present in modern page tables is
a Reference Bit.

— 1: The page was recently referenced.
— 0: The page has not been recently referenced.

* Every time the page is accessed (read/write),
the reference bit is set to 1.



Using the Reference Bit

* When a page needs to be evicted, the page
table is scanned.

— If the page is in RAM (resident): f
* If Ref=1, set it Ref=0.

« If Ref=0, evict page.

— Store the pointer to continue

the scan at the same position \_/—
next eviction cycle. .




Reference Bit

 The Reference Bit implements a LRU-like
algorithm with only 1 bit of storage /PTE.
— Used in x86 processors.

e Other algorithms exist for determining page
evictions.

— More bits allow for increasingly complex
functionality. (FIFO, LRU, MRU, LRU, etc.)



Evicting Pages: Slow?

* When a page is evicted, the data has to be
written to the hard disk.

— Much slower than RAM
— Can this be optimized?



Dirty Bit

Each PTE contains a bit to denote if the page
has been written to since it was loaded.

— 1: Data is “dirty”, has been written.
— 0: Data is “clean”, same as when it was loaded.

— Implementation is done in the OS, not hardware.



Protection Bits

 Each PTE also contains bits to protect regions
of memory.

— Read/Write Bit

* 1: Enable both reading and writing to the memory.
* 0: Enable only reading to the memory.

— No Execute (NX) Bit

« 1: Prevent the memory page’s data from being
executed.

= 0: Allow execution of the memory page’s data.
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Other Bits

* The bits discussed so-far are common across
every modern page table implementation:
— Resident Bit
— Eviction Bit(s)

* In x86: Reference Bit

— Dirty Bit
— Read/Write Bit ~————
— NX Bit —




Other Bits

e Other bits are present on PTEs for various
purposes:
— Optimizations
— Caching
— Variable-sized Pages
— Additional Permissions/Protections



Putting it All Together...

e Lets assume we have another simple system...
— Size of a page:
* Enough to store one stack frame OR

* Enough to store one program’s function OR
* Enough to store a small heap



int subtract(int a, int *b)
int ¢ = a - *b;
return c<c;

}

int add(int a, int *b)

int ¢ = a 4+ *b;
—
return c;
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int subtract(int a, int *b) ({
int = a - *b;
return o;
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int subtract(int a, int *b)
int ¢ = a - *b;
return c;

}

int add(int a, int *b) ({
int ¢ = a + *b;
return o;

}

void main() {
int a = 4;

int *b = malloc(sizeof (int)) ;

*b = 7;
int ¢ = add(a, b):

int 4 = subtract(c, b);
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int subtract(int a, int *b)
int ¢ = a - *b;
return c;

}

int add(int a, int *b) ({
int ¢ = a + *b;
return o;

}

void main() {
int a = 4;

int *b = malloc(sizeof (int)) ;

*b = 7;
int ¢ = add(a, b):

int 4 = subtract(c, b);
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Multi-Level Page Tables!
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int subtract(int a, int *b)
int ¢ = a - *b;
return c;

}

int add(int a, int *b) ({
int ¢ = a + *b;
return o;

}

void main() {

char *b = malloc (sizeocf (int))

*(b + 1000) = 9;
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Segmentation Faults

* A “Seg Fault” occurs when an access is made
to a virtual memory address that cannot be
resolved.



Segmentation Faults

 Example: . a /“@/3

void *b = malloc(300);

Page #18 (Each block is 100 B)
)
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Q1: What does *(b + 400) = 9 do?
Q2: What does *(b + 900) = 9 do?
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Multi-Level Page Table

 Solution: Create multiple levels of tables to
look up a physical memory address.

Second Level Page Table

First Le.vel Page Table
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Multi-Level Page Table

 Advantage:
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Multi-Level Page Tables

* Each virtual address can now be divided into
(n+1) different pieces for an (n) level page
table.

— Example: Two Level Page Table:
* First Level Page Number

* Second Level Page Number
* Page Offset



* Given
— 32-bit Virtual Addresses

— 4 KB Pages — | g "_g_-’*"’l S \

— 12-bit First Level Page Table Numbe
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* Given S —)=—

— 32-bit Virtual Addresses
— 64 KB Pages = 6
— 8-bit First Level Page Table Number

—
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* Given
— 32-bit Virtual Addresses
— 4 KB Pages
— 4 B page table entries

* How many PTEs fit into one page?
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Multi-Level Page Tables in x86

In x86, a two-level page table is used.
— 10-bit Address for the First Level Page Table

— 10-bit Address for the Second Level Page Table
— 12-bit Address for the Page Offset

* Result:

— Every single page table fits into one page

— When a new process is context switched in, only one
page needs to initially be loaded for the page table






Review of Memory

Every process has its own virtual memory
address space (0Ox0 — Oxff...fff).

Inside that virtual memory space, identify four
key regions of memory:



Review of Memory

* To a process, a heap is one contiguous chunk
of memory.

— As memory is allocated and free’d, holes develop
in the contiguous chunk of memory.

— Three strategies to manage this memory space:



Review of Memory

« At a system level, the virtual memory for each
process must be mapped to physical storage.

* Two key methods:



Review of Memory

 To implement paging, we use a page table
made up of page table entries. Key
information contained in each PTE includes:



Review of Memory

When the system runs out of available RAM to
store data, pages that likely won’t be accessed
in the near future are paged-out.

— Five Strategies:



Review of Memory

 The page table itself is a large data structure.
Modern systems break up this page table into
multiple levels.

— Key ldea: Identify the number of bits required for
every step in memory address translation.

— Understand the address translation process.






