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I/O and Filesystems 

Based on slides by Matt Welsh, Harvard 



Disks 

 Series of bytes, how to be organize them 

into file systems? 
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Filesystems 

 A filesystem provides a high-level application access to disk 

 As well as CD, DVD, tape, floppy, etc... 

 Masks the details of low-level sector-based I/O operations 

 Provides structured access to data (files and directories) 

 Caches recently-accessed data in memory 

 Hierarchical filesystems: Most common type 

 Organized as a tree of directories and files 

 Byte-oriented vs. record-oriented files 

 UNIX, Windows, etc. all provide byte-oriented file access 

 May read and write files a byte at a time 

 Many older OS's provided only record-oriented files 

 File composed of a set of records; may only read and write a record at a time 

 Versioning filesystems 

 Keep track of older versions of files 

 e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2 
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Filesystem Operations 

 Filesystems provide a standard interface to files and directories: 

 Create a file or directory 

 Delete a file or directory 

 Open a file or directory – allows subsequent access 

 Read, write, append to file contents 

 Add or remove directory entries 

 Close a file or directory – terminates access 

 What other features do filesystems provide? 

 Accounting and quotas – prevent your classmates from hogging the disks 

 Backup – some filesystems have a “$HOME/.backup” containing 

automatic snapshots 

 Indexing and search capabilities 

 File versioning 

 Encryption 

 Automatic compression of infrequently-used files 

 Should this functionality be part of the filesystem or built on top? 

 Classic OS community debate: Where is the best place to put 

functionality? 
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Basic Filesystem Structures 

 Every file and directory is represented by an inode 

 Stands for “index node” 

 Contains two kinds of information: 

 1) Metadata describing the file's owner, access rights, etc. 

 2) Location of the file's blocks on disk 
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Directories 

 A directory is a special kind of file that contains a list of (filename, 

inode number) pairs 

 

 

 

 

 

 

 

 

 These are the contents of the directory “file data” itself – NOT the 

directory's inode! 

 Filenames (in UNIX) are not stored in the inode at all! 

 Two open questions: 

 How do we find the root directory (“ / “ on UNIX systems)? 

 How do we get from an inode number to the location of the inode on disk? 
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Pathname resolution 

 To look up a pathname “/etc/passwd”, start at root 

directory and walk down chain of inodes... 
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Locating inodes on disk 

 All right, so directories tell us the inode number of a file. 

 How the heck do we find the inode itself on disk? 

 Basic idea: Top part of filesystem contains all of the inodes! 

 

 

 

 

 

 

 inode number is just the “index” of the inode 

 Easy to compute the block address of a given inode: 

 block_addr(inode_num) = block_offset_of_first_inode + (inode_num * 

inode_size) 

 This implies that a filesystem has a fixed number of potential inodes 

 This number is generally set when the filesystem is created 

 The superblock stores important metadata on filesystem layout, list of free 

blocks, etc. 
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How should we organize blocks on a disk? 

 Very simple policy: A file consists of linked blocks 

 inode points to the first block of the file 

 Each block points to the next block in the file (just a linked list on disk) 

 What are the advantages and disadvantages?? 
 

 

 

 

 Indexed files 

 inode contains a list of block numbers containing the file 

 Array is allocated when the file is created 

 What are the advantages and disadvantages?? 
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Multilevel indexed files 

 inode contains a list of 10-15 direct block pointers 

 First few blocks of file can be referred to by the inode itself 

 inode also contains a pointer to a single indirect, double 

indirect, and triple indirect blocks 

 Allows file to grow to be incredibly large!!! 
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File system caching 

 Most filesystems cache significant amounts of disk in 

memory 

 e.g., Linux tries to use all “free” physical memory as a giant cache 

 Avoids huge overhead for going to disk for every I/O 
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Caching issues 

 Where should the cache go? 
 Below the filesystem layer: Cache individual disk blocks 

 Above the filesystem layer: Cache entire files and directories 

 Which is better?? 
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Caching issues (2) 

 Reliability issues 

 What happens when you write to the cache but the system crashes? 

 What if you update some of the blocks on disk but not others? 

 Example: Update the inode on disk but not the data blocks? 

 Write-through cache: All writes immediately sent to disk 

 Write-back cache: Cache writes stored in memory until evicted (then 

written to disk) 

 Which is better for performance? For reliability? 
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Caching issues (2) 

 “Syncing” a filesystem writes back any dirty cache 

blocks to disk 
 UNIX “sync” command achieves this. 

 Can also use fsync() system call to sync any blocks for a given file. 
 Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to 

the disk! 

 This is also complicated by memory caching on the disk itself. 

 Crash recovery 
 If system crashes before sync occurs, “fsck” checks the filesystem 

for errors 

 Example: an inode pointing to a block that is marked as free in the 

free block list 

 Another example: An inode with no directory entry pointing to it 
 These usually get linked into a “lost+found” directory  

 inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might 

belong! 
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Caching issues (3) 

 Read ahead 

 Recall: Seek time dominates overhead of disk I/O 

 So, would ideally like to read multiple blocks into memory when 

you have a cache miss 

 Amortize the cost of the seek for multiple reads 

 Useful if file data is laid out in contiguous blocks on disk 

 Especially if the application is performing sequential access to the file 
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Making filesystems resilient: 

RAID 

Copyright ©: University of Illinois CS 
241 Staff 
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RAID Motivation 
 Speed of disks not matching other components 

 Moore’s law: CPU speed doubles every 18 months 

 SRAM speeds increasing by 40-100% a year 

 In contrast, disk seek time only improving 7% a year* 

 Although greater density leads to improved transfer times once seek is done 

 *SSD: Beginning to blur the lines between RAM and disk 

 1988: Emergence of PCs start driving down costs of disks 
 PC-class disks were smaller, cheaper, and only marginally slower 

18 



RAID Motivation 

 Basic idea: Build I/O systems as arrays of cheap 

disks 

 Allow data to be striped across multiple disks 

 Means you can read/write multiple disks in parallel – 

greatly improve performance 

 Problem: disks are extremely unreliable 

 Mean Time to Failure (MTTF) 

 MTTF (disk array) = MTTF (single disk) / # disks 

 Adding more disks means that failures happen more 

frequently.. 

 An array of 100 disks with an MTTF of 30,000 hours = 

just under 2 weeks for the array’s MTTF! 
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Increasing reliability 

 Idea: Replicate data across multiple disks 

 When a disk fails, lost information can be regenerated from the 

redundant data 

 Simplest form: Mirroring (also called “RAID 1”) 

 All data is mirrored across two disks 

 Advantages: 

 Reads are faster, since both disks can be read in parallel 

 Higher reliability (of course) 

 Disadvantages: 

 Writes are slightly slower, since OS must wait for both disks to do 

write 

 Doubles the cost of the storage system! 
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RAID 3 

 Rather than mirroring, use parity codes 
 Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an 

even number of “1” bits in the set {b1, b2, ..., bN, P} 

 Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P) 

to recover it. 

 Where to store the parity codes? 
 Add an extra “check disk” that stores parity bits for the data stored on the 

rest of the N disks 

 Advantages:  
 If a single disk fails, can easily recompute the lost data from the parity 

code 

 Can use one parity disk for several data disks (reduces cost) 

 Disadvantages: 
 Each write to a block must update the corresponding parity block as well 
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RAID 3 example 

 

22 



RAID 3 example 

 

23 



RAID 3 example 

 

24 



RAID 3 example 
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RAID 3 example 

 1. Read back data from other disks 

 2. Recalculate lost data from parity code 

 3. Rebuild data on lost disk 
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RAID 3 issues 

 Terminology 

 MTTF = mean time to failure 

 MTTR = mean time to repair 

 What is the MTTF of RAID? 
 Both RAID 1 and RAID 3 tolerate the failure of a single disk 

 As long as a second disk does not die while we are repairing the first 

failure, we are in good shape! 

 So, what is the probability of a second disk failure? 

 P(2nd failure) ≈ MTTR / (MTTF of one disk  / # disks -1) 
 Assumes independent, exponential failure rates; see Patterson RAID paper for derivation 

 10 disks, MTTF (disk) = 1000 days, MTTR = 1 day 
 P(2nd failure) ≈ 1 day / ( 1000 / 9 ) = 0.009 

 What is the performance of RAID 3? 
 Check disk must be updated each time there is a write 

 Problem: The check disk is then a performance bottleneck 
 Only a single read/write can be done at once on the whole system! 
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RAID 5 

 Another approach: Interleaved check blocks (“RAID 5”) 

 Rotate the assignment of data blocks and check blocks across 

disks 

 Avoids the bottleneck of a single disk for storing check data 

 Allows multiple reads/writes to occur in parallel (since different 

disks affected) 
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Reliable distributed storage 

 Today, giant data stores distributed across 100s of 

thousands of disks across the world 

 e.g., your mail on gmail 

 

 “You know you have a large storage system when you 

get paged at 1 AM because you only have a few 

petabytes of storage left.” 

 – a “note from the trenches” at Google 

 

29 



Reliable distributed storage 

 Issues 

 Failure is the common case 

 Google reports 2-10% of disks fail per year 

 Now multiply that by 60,000+ disks in a single warehouse... 

 Must survive failure of not just a disk, but a rack of servers or a 

whole data center 

 Solutions 

 Simple redundancy (2 or 3 copies of each file) 

 e.g., Google GFS (2001) 

 More efficient redundancy (analogous to RAID 3++) 

 e.g., Google Colossus filesystem (~2010): customizable 

replication including Reed-Solomon codes with 1.5x 

redundancy 

 More interesting tidbits: http://goo.gl/LwFIy 
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