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I/O and Filesystems 

Based on slides by Matt Welsh, Harvard 



Disks 

 Series of bytes, how to be organize them 

into file systems? 
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Filesystems 

 A filesystem provides a high-level application access to disk 

 As well as CD, DVD, tape, floppy, etc... 

 Masks the details of low-level sector-based I/O operations 

 Provides structured access to data (files and directories) 

 Caches recently-accessed data in memory 

 Hierarchical filesystems: Most common type 

 Organized as a tree of directories and files 

 Byte-oriented vs. record-oriented files 

 UNIX, Windows, etc. all provide byte-oriented file access 

 May read and write files a byte at a time 

 Many older OS's provided only record-oriented files 

 File composed of a set of records; may only read and write a record at a time 

 Versioning filesystems 

 Keep track of older versions of files 

 e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2 
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Filesystem Operations 

 Filesystems provide a standard interface to files and directories: 

 Create a file or directory 

 Delete a file or directory 

 Open a file or directory – allows subsequent access 

 Read, write, append to file contents 

 Add or remove directory entries 

 Close a file or directory – terminates access 

 What other features do filesystems provide? 

 Accounting and quotas – prevent your classmates from hogging the disks 

 Backup – some filesystems have a “$HOME/.backup” containing 

automatic snapshots 

 Indexing and search capabilities 

 File versioning 

 Encryption 

 Automatic compression of infrequently-used files 

 Should this functionality be part of the filesystem or built on top? 

 Classic OS community debate: Where is the best place to put 

functionality? 
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Basic Filesystem Structures 

 Every file and directory is represented by an inode 

 Stands for “index node” 

 Contains two kinds of information: 

 1) Metadata describing the file's owner, access rights, etc. 

 2) Location of the file's blocks on disk 
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Directories 

 A directory is a special kind of file that contains a list of (filename, 

inode number) pairs 

 

 

 

 

 

 

 

 

 These are the contents of the directory “file data” itself – NOT the 

directory's inode! 

 Filenames (in UNIX) are not stored in the inode at all! 

 Two open questions: 

 How do we find the root directory (“ / “ on UNIX systems)? 

 How do we get from an inode number to the location of the inode on disk? 
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Pathname resolution 

 To look up a pathname “/etc/passwd”, start at root 

directory and walk down chain of inodes... 
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Locating inodes on disk 

 All right, so directories tell us the inode number of a file. 

 How the heck do we find the inode itself on disk? 

 Basic idea: Top part of filesystem contains all of the inodes! 

 

 

 

 

 

 

 inode number is just the “index” of the inode 

 Easy to compute the block address of a given inode: 

 block_addr(inode_num) = block_offset_of_first_inode + (inode_num * 

inode_size) 

 This implies that a filesystem has a fixed number of potential inodes 

 This number is generally set when the filesystem is created 

 The superblock stores important metadata on filesystem layout, list of free 

blocks, etc. 
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How should we organize blocks on a disk? 

 Very simple policy: A file consists of linked blocks 

 inode points to the first block of the file 

 Each block points to the next block in the file (just a linked list on disk) 

 What are the advantages and disadvantages?? 
 

 

 

 

 Indexed files 

 inode contains a list of block numbers containing the file 

 Array is allocated when the file is created 

 What are the advantages and disadvantages?? 
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Multilevel indexed files 

 inode contains a list of 10-15 direct block pointers 

 First few blocks of file can be referred to by the inode itself 

 inode also contains a pointer to a single indirect, double 

indirect, and triple indirect blocks 

 Allows file to grow to be incredibly large!!! 
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File system caching 

 Most filesystems cache significant amounts of disk in 

memory 

 e.g., Linux tries to use all “free” physical memory as a giant cache 

 Avoids huge overhead for going to disk for every I/O 
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Caching issues 

 Where should the cache go? 
 Below the filesystem layer: Cache individual disk blocks 

 Above the filesystem layer: Cache entire files and directories 

 Which is better?? 
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Caching issues 

 Where should the cache go? 
 Below the filesystem layer: Cache individual disk blocks 
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Caching issues (2) 

 Reliability issues 

 What happens when you write to the cache but the system crashes? 

 What if you update some of the blocks on disk but not others? 

 Example: Update the inode on disk but not the data blocks? 

 Write-through cache: All writes immediately sent to disk 

 Write-back cache: Cache writes stored in memory until evicted (then 

written to disk) 

 Which is better for performance? For reliability? 
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Caching issues (2) 

 “Syncing” a filesystem writes back any dirty cache 

blocks to disk 
 UNIX “sync” command achieves this. 

 Can also use fsync() system call to sync any blocks for a given file. 
 Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to 

the disk! 

 This is also complicated by memory caching on the disk itself. 

 Crash recovery 
 If system crashes before sync occurs, “fsck” checks the filesystem 

for errors 

 Example: an inode pointing to a block that is marked as free in the 

free block list 

 Another example: An inode with no directory entry pointing to it 
 These usually get linked into a “lost+found” directory  

 inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might 

belong! 
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Caching issues (3) 

 Read ahead 

 Recall: Seek time dominates overhead of disk I/O 

 So, would ideally like to read multiple blocks into memory when 

you have a cache miss 

 Amortize the cost of the seek for multiple reads 

 Useful if file data is laid out in contiguous blocks on disk 

 Especially if the application is performing sequential access to the file 
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Making filesystems resilient: 

RAID 
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RAID Motivation 
 Speed of disks not matching other components 

 Moore’s law: CPU speed doubles every 18 months 

 SRAM speeds increasing by 40-100% a year 

 In contrast, disk seek time only improving 7% a year* 

 Although greater density leads to improved transfer times once seek is done 

 *SSD: Beginning to blur the lines between RAM and disk 

 1988: Emergence of PCs start driving down costs of disks 
 PC-class disks were smaller, cheaper, and only marginally slower 
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RAID Motivation 

 Basic idea: Build I/O systems as arrays of cheap 

disks 

 Allow data to be striped across multiple disks 

 Means you can read/write multiple disks in parallel – 

greatly improve performance 

 Problem: disks are extremely unreliable 

 Mean Time to Failure (MTTF) 

 MTTF (disk array) = MTTF (single disk) / # disks 

 Adding more disks means that failures happen more 

frequently.. 

 An array of 100 disks with an MTTF of 30,000 hours = 

just under 2 weeks for the array’s MTTF! 
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Increasing reliability 

 Idea: Replicate data across multiple disks 

 When a disk fails, lost information can be regenerated from the 

redundant data 

 Simplest form: Mirroring (also called “RAID 1”) 

 All data is mirrored across two disks 

 Advantages: 

 Reads are faster, since both disks can be read in parallel 

 Higher reliability (of course) 

 Disadvantages: 

 Writes are slightly slower, since OS must wait for both disks to do 

write 

 Doubles the cost of the storage system! 

20 



RAID 3 

 Rather than mirroring, use parity codes 
 Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an 

even number of “1” bits in the set {b1, b2, ..., bN, P} 

 Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P) 

to recover it. 

 Where to store the parity codes? 
 Add an extra “check disk” that stores parity bits for the data stored on the 

rest of the N disks 

 Advantages:  
 If a single disk fails, can easily recompute the lost data from the parity 

code 

 Can use one parity disk for several data disks (reduces cost) 

 Disadvantages: 
 Each write to a block must update the corresponding parity block as well 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 
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RAID 3 example 

 1. Read back data from other disks 

 2. Recalculate lost data from parity code 

 3. Rebuild data on lost disk 
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RAID 3 issues 

 Terminology 

 MTTF = mean time to failure 

 MTTR = mean time to repair 

 What is the MTTF of RAID? 
 Both RAID 1 and RAID 3 tolerate the failure of a single disk 

 As long as a second disk does not die while we are repairing the first 

failure, we are in good shape! 

 So, what is the probability of a second disk failure? 

 P(2nd failure) ≈ MTTR / (MTTF of one disk  / # disks -1) 
 Assumes independent, exponential failure rates; see Patterson RAID paper for derivation 

 10 disks, MTTF (disk) = 1000 days, MTTR = 1 day 
 P(2nd failure) ≈ 1 day / ( 1000 / 9 ) = 0.009 

 What is the performance of RAID 3? 
 Check disk must be updated each time there is a write 

 Problem: The check disk is then a performance bottleneck 
 Only a single read/write can be done at once on the whole system! 
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RAID 5 

 Another approach: Interleaved check blocks (“RAID 5”) 

 Rotate the assignment of data blocks and check blocks across 

disks 

 Avoids the bottleneck of a single disk for storing check data 

 Allows multiple reads/writes to occur in parallel (since different 

disks affected) 
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Reliable distributed storage 

 Today, giant data stores distributed across 100s of 

thousands of disks across the world 

 e.g., your mail on gmail 

 

 “You know you have a large storage system when you 

get paged at 1 AM because you only have a few 

petabytes of storage left.” 

 – a “note from the trenches” at Google 
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Reliable distributed storage 

 Issues 

 Failure is the common case 

 Google reports 2-10% of disks fail per year 

 Now multiply that by 60,000+ disks in a single warehouse... 

 Must survive failure of not just a disk, but a rack of servers or a 

whole data center 

 Solutions 

 Simple redundancy (2 or 3 copies of each file) 

 e.g., Google GFS (2001) 

 More efficient redundancy (analogous to RAID 3++) 

 e.g., Google Colossus filesystem (~2010): customizable 

replication including Reed-Solomon codes with 1.5x 

redundancy 

 More interesting tidbits: http://goo.gl/LwFIy 
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