

1

I/O and Filesystems

Based on slides by Matt Welsh, Harvard

Disks

 Series of bytes, how to be organize them

into file systems?

2

Filesystems

 A filesystem provides a high-level application access to disk

 As well as CD, DVD, tape, floppy, etc...

 Masks the details of low-level sector-based I/O operations

 Provides structured access to data (files and directories)

 Caches recently-accessed data in memory

 Hierarchical filesystems: Most common type

 Organized as a tree of directories and files

 Byte-oriented vs. record-oriented files

 UNIX, Windows, etc. all provide byte-oriented file access

 May read and write files a byte at a time

 Many older OS's provided only record-oriented files

 File composed of a set of records; may only read and write a record at a time

 Versioning filesystems

 Keep track of older versions of files

 e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

3

Filesystem Operations

 Filesystems provide a standard interface to files and directories:

 Create a file or directory

 Delete a file or directory

 Open a file or directory – allows subsequent access

 Read, write, append to file contents

 Add or remove directory entries

 Close a file or directory – terminates access

 What other features do filesystems provide?

 Accounting and quotas – prevent your classmates from hogging the disks

 Backup – some filesystems have a “$HOME/.backup” containing

automatic snapshots

 Indexing and search capabilities

 File versioning

 Encryption

 Automatic compression of infrequently-used files

 Should this functionality be part of the filesystem or built on top?

 Classic OS community debate: Where is the best place to put

functionality?
4

Basic Filesystem Structures

 Every file and directory is represented by an inode

 Stands for “index node”

 Contains two kinds of information:

 1) Metadata describing the file's owner, access rights, etc.

 2) Location of the file's blocks on disk

5

Directories

 A directory is a special kind of file that contains a list of (filename,

inode number) pairs

 These are the contents of the directory “file data” itself – NOT the

directory's inode!

 Filenames (in UNIX) are not stored in the inode at all!

 Two open questions:

 How do we find the root directory (“ / “ on UNIX systems)?

 How do we get from an inode number to the location of the inode on disk?
6

Pathname resolution

 To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

7

Locating inodes on disk

 All right, so directories tell us the inode number of a file.

 How the heck do we find the inode itself on disk?

 Basic idea: Top part of filesystem contains all of the inodes!

 inode number is just the “index” of the inode

 Easy to compute the block address of a given inode:

 block_addr(inode_num) = block_offset_of_first_inode + (inode_num *

inode_size)

 This implies that a filesystem has a fixed number of potential inodes

 This number is generally set when the filesystem is created

 The superblock stores important metadata on filesystem layout, list of free

blocks, etc.
8

How should we organize blocks on a disk?

 Very simple policy: A file consists of linked blocks

 inode points to the first block of the file

 Each block points to the next block in the file (just a linked list on disk)

 What are the advantages and disadvantages??

 Indexed files

 inode contains a list of block numbers containing the file

 Array is allocated when the file is created

 What are the advantages and disadvantages??

9

Multilevel indexed files

 inode contains a list of 10-15 direct block pointers

 First few blocks of file can be referred to by the inode itself

 inode also contains a pointer to a single indirect, double

indirect, and triple indirect blocks

 Allows file to grow to be incredibly large!!!

10

File system caching

 Most filesystems cache significant amounts of disk in

memory

 e.g., Linux tries to use all “free” physical memory as a giant cache

 Avoids huge overhead for going to disk for every I/O

11

Caching issues

 Where should the cache go?
 Below the filesystem layer: Cache individual disk blocks

 Above the filesystem layer: Cache entire files and directories

 Which is better??

12

Caching issues

 Where should the cache go?
 Below the filesystem layer: Cache individual disk blocks

 Above the filesystem layer: Cache entire files and directories

 Which is better??

13

Caching issues (2)

 Reliability issues

 What happens when you write to the cache but the system crashes?

 What if you update some of the blocks on disk but not others?

 Example: Update the inode on disk but not the data blocks?

 Write-through cache: All writes immediately sent to disk

 Write-back cache: Cache writes stored in memory until evicted (then

written to disk)

 Which is better for performance? For reliability?

14

Caching issues (2)

 “Syncing” a filesystem writes back any dirty cache

blocks to disk
 UNIX “sync” command achieves this.

 Can also use fsync() system call to sync any blocks for a given file.
 Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to

the disk!

 This is also complicated by memory caching on the disk itself.

 Crash recovery
 If system crashes before sync occurs, “fsck” checks the filesystem

for errors

 Example: an inode pointing to a block that is marked as free in the

free block list

 Another example: An inode with no directory entry pointing to it
 These usually get linked into a “lost+found” directory

 inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might

belong!

15

Caching issues (3)

 Read ahead

 Recall: Seek time dominates overhead of disk I/O

 So, would ideally like to read multiple blocks into memory when

you have a cache miss

 Amortize the cost of the seek for multiple reads

 Useful if file data is laid out in contiguous blocks on disk

 Especially if the application is performing sequential access to the file

16

Making filesystems resilient:

RAID

Copyright ©: University of Illinois CS
241 Staff

17

RAID Motivation
 Speed of disks not matching other components

 Moore’s law: CPU speed doubles every 18 months

 SRAM speeds increasing by 40-100% a year

 In contrast, disk seek time only improving 7% a year*

 Although greater density leads to improved transfer times once seek is done

 *SSD: Beginning to blur the lines between RAM and disk

 1988: Emergence of PCs start driving down costs of disks
 PC-class disks were smaller, cheaper, and only marginally slower

18

RAID Motivation

 Basic idea: Build I/O systems as arrays of cheap

disks

 Allow data to be striped across multiple disks

 Means you can read/write multiple disks in parallel –

greatly improve performance

 Problem: disks are extremely unreliable

 Mean Time to Failure (MTTF)

 MTTF (disk array) = MTTF (single disk) / # disks

 Adding more disks means that failures happen more

frequently..

 An array of 100 disks with an MTTF of 30,000 hours =

just under 2 weeks for the array’s MTTF!

19

Increasing reliability

 Idea: Replicate data across multiple disks

 When a disk fails, lost information can be regenerated from the

redundant data

 Simplest form: Mirroring (also called “RAID 1”)

 All data is mirrored across two disks

 Advantages:

 Reads are faster, since both disks can be read in parallel

 Higher reliability (of course)

 Disadvantages:

 Writes are slightly slower, since OS must wait for both disks to do

write

 Doubles the cost of the storage system!

20

RAID 3

 Rather than mirroring, use parity codes
 Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an

even number of “1” bits in the set {b1, b2, ..., bN, P}

 Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P)

to recover it.

 Where to store the parity codes?
 Add an extra “check disk” that stores parity bits for the data stored on the

rest of the N disks

 Advantages:
 If a single disk fails, can easily recompute the lost data from the parity

code

 Can use one parity disk for several data disks (reduces cost)

 Disadvantages:
 Each write to a block must update the corresponding parity block as well

21

RAID 3 example

22

RAID 3 example

23

RAID 3 example

24

RAID 3 example

25

RAID 3 example

 1. Read back data from other disks

 2. Recalculate lost data from parity code

 3. Rebuild data on lost disk
26

RAID 3 issues

 Terminology

 MTTF = mean time to failure

 MTTR = mean time to repair

 What is the MTTF of RAID?
 Both RAID 1 and RAID 3 tolerate the failure of a single disk

 As long as a second disk does not die while we are repairing the first

failure, we are in good shape!

 So, what is the probability of a second disk failure?

 P(2nd failure) ≈ MTTR / (MTTF of one disk / # disks -1)
 Assumes independent, exponential failure rates; see Patterson RAID paper for derivation

 10 disks, MTTF (disk) = 1000 days, MTTR = 1 day
 P(2nd failure) ≈ 1 day / (1000 / 9) = 0.009

 What is the performance of RAID 3?
 Check disk must be updated each time there is a write

 Problem: The check disk is then a performance bottleneck
 Only a single read/write can be done at once on the whole system!

27

RAID 5

 Another approach: Interleaved check blocks (“RAID 5”)

 Rotate the assignment of data blocks and check blocks across

disks

 Avoids the bottleneck of a single disk for storing check data

 Allows multiple reads/writes to occur in parallel (since different

disks affected)

28

Reliable distributed storage

 Today, giant data stores distributed across 100s of

thousands of disks across the world

 e.g., your mail on gmail

 “You know you have a large storage system when you

get paged at 1 AM because you only have a few

petabytes of storage left.”

 – a “note from the trenches” at Google

29

Reliable distributed storage

 Issues

 Failure is the common case

 Google reports 2-10% of disks fail per year

 Now multiply that by 60,000+ disks in a single warehouse...

 Must survive failure of not just a disk, but a rack of servers or a

whole data center

 Solutions

 Simple redundancy (2 or 3 copies of each file)

 e.g., Google GFS (2001)

 More efficient redundancy (analogous to RAID 3++)

 e.g., Google Colossus filesystem (~2010): customizable

replication including Reed-Solomon codes with 1.5x

redundancy

 More interesting tidbits: http://goo.gl/LwFIy

30

