

1

I/O and Filesystems

Based on slides by Matt Welsh, Harvard

Disks

 Series of bytes, how to be organize them

into file systems?

2

Filesystems

 A filesystem provides a high-level application access to disk

 As well as CD, DVD, tape, floppy, etc...

 Masks the details of low-level sector-based I/O operations

 Provides structured access to data (files and directories)

 Caches recently-accessed data in memory

 Hierarchical filesystems: Most common type

 Organized as a tree of directories and files

 Byte-oriented vs. record-oriented files

 UNIX, Windows, etc. all provide byte-oriented file access

 May read and write files a byte at a time

 Many older OS's provided only record-oriented files

 File composed of a set of records; may only read and write a record at a time

 Versioning filesystems

 Keep track of older versions of files

 e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

3

Filesystem Operations

 Filesystems provide a standard interface to files and directories:

 Create a file or directory

 Delete a file or directory

 Open a file or directory – allows subsequent access

 Read, write, append to file contents

 Add or remove directory entries

 Close a file or directory – terminates access

 What other features do filesystems provide?

 Accounting and quotas – prevent your classmates from hogging the disks

 Backup – some filesystems have a “$HOME/.backup” containing

automatic snapshots

 Indexing and search capabilities

 File versioning

 Encryption

 Automatic compression of infrequently-used files

 Should this functionality be part of the filesystem or built on top?

 Classic OS community debate: Where is the best place to put

functionality?
4

Basic Filesystem Structures

 Every file and directory is represented by an inode

 Stands for “index node”

 Contains two kinds of information:

 1) Metadata describing the file's owner, access rights, etc.

 2) Location of the file's blocks on disk

5

Directories

 A directory is a special kind of file that contains a list of (filename,

inode number) pairs

 These are the contents of the directory “file data” itself – NOT the

directory's inode!

 Filenames (in UNIX) are not stored in the inode at all!

 Two open questions:

 How do we find the root directory (“ / “ on UNIX systems)?

 How do we get from an inode number to the location of the inode on disk?
6

Pathname resolution

 To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

7

Locating inodes on disk

 All right, so directories tell us the inode number of a file.

 How the heck do we find the inode itself on disk?

 Basic idea: Top part of filesystem contains all of the inodes!

 inode number is just the “index” of the inode

 Easy to compute the block address of a given inode:

 block_addr(inode_num) = block_offset_of_first_inode + (inode_num *

inode_size)

 This implies that a filesystem has a fixed number of potential inodes

 This number is generally set when the filesystem is created

 The superblock stores important metadata on filesystem layout, list of free

blocks, etc.
8

How should we organize blocks on a disk?

 Very simple policy: A file consists of linked blocks

 inode points to the first block of the file

 Each block points to the next block in the file (just a linked list on disk)

 What are the advantages and disadvantages??

 Indexed files

 inode contains a list of block numbers containing the file

 Array is allocated when the file is created

 What are the advantages and disadvantages??

9

Multilevel indexed files

 inode contains a list of 10-15 direct block pointers

 First few blocks of file can be referred to by the inode itself

 inode also contains a pointer to a single indirect, double

indirect, and triple indirect blocks

 Allows file to grow to be incredibly large!!!

10

File system caching

 Most filesystems cache significant amounts of disk in

memory

 e.g., Linux tries to use all “free” physical memory as a giant cache

 Avoids huge overhead for going to disk for every I/O

11

Caching issues

 Where should the cache go?
 Below the filesystem layer: Cache individual disk blocks

 Above the filesystem layer: Cache entire files and directories

 Which is better??

12

Caching issues

 Where should the cache go?
 Below the filesystem layer: Cache individual disk blocks

 Above the filesystem layer: Cache entire files and directories

 Which is better??

13

Caching issues (2)

 Reliability issues

 What happens when you write to the cache but the system crashes?

 What if you update some of the blocks on disk but not others?

 Example: Update the inode on disk but not the data blocks?

 Write-through cache: All writes immediately sent to disk

 Write-back cache: Cache writes stored in memory until evicted (then

written to disk)

 Which is better for performance? For reliability?

14

Caching issues (2)

 “Syncing” a filesystem writes back any dirty cache

blocks to disk
 UNIX “sync” command achieves this.

 Can also use fsync() system call to sync any blocks for a given file.
 Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to

the disk!

 This is also complicated by memory caching on the disk itself.

 Crash recovery
 If system crashes before sync occurs, “fsck” checks the filesystem

for errors

 Example: an inode pointing to a block that is marked as free in the

free block list

 Another example: An inode with no directory entry pointing to it
 These usually get linked into a “lost+found” directory

 inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might

belong!

15

Caching issues (3)

 Read ahead

 Recall: Seek time dominates overhead of disk I/O

 So, would ideally like to read multiple blocks into memory when

you have a cache miss

 Amortize the cost of the seek for multiple reads

 Useful if file data is laid out in contiguous blocks on disk

 Especially if the application is performing sequential access to the file

16

Making filesystems resilient:

RAID

Copyright ©: University of Illinois CS
241 Staff

17

RAID Motivation
 Speed of disks not matching other components

 Moore’s law: CPU speed doubles every 18 months

 SRAM speeds increasing by 40-100% a year

 In contrast, disk seek time only improving 7% a year*

 Although greater density leads to improved transfer times once seek is done

 *SSD: Beginning to blur the lines between RAM and disk

 1988: Emergence of PCs start driving down costs of disks
 PC-class disks were smaller, cheaper, and only marginally slower

18

RAID Motivation

 Basic idea: Build I/O systems as arrays of cheap

disks

 Allow data to be striped across multiple disks

 Means you can read/write multiple disks in parallel –

greatly improve performance

 Problem: disks are extremely unreliable

 Mean Time to Failure (MTTF)

 MTTF (disk array) = MTTF (single disk) / # disks

 Adding more disks means that failures happen more

frequently..

 An array of 100 disks with an MTTF of 30,000 hours =

just under 2 weeks for the array’s MTTF!

19

Increasing reliability

 Idea: Replicate data across multiple disks

 When a disk fails, lost information can be regenerated from the

redundant data

 Simplest form: Mirroring (also called “RAID 1”)

 All data is mirrored across two disks

 Advantages:

 Reads are faster, since both disks can be read in parallel

 Higher reliability (of course)

 Disadvantages:

 Writes are slightly slower, since OS must wait for both disks to do

write

 Doubles the cost of the storage system!

20

RAID 3

 Rather than mirroring, use parity codes
 Given N bits {b1, b2, ..., bN}, the parity bit P is the bit {0,1} that yields an

even number of “1” bits in the set {b1, b2, ..., bN, P}

 Idea: If any bit in {b1, b2, ..., bN} is lost, can use the remaining bits (plus P)

to recover it.

 Where to store the parity codes?
 Add an extra “check disk” that stores parity bits for the data stored on the

rest of the N disks

 Advantages:
 If a single disk fails, can easily recompute the lost data from the parity

code

 Can use one parity disk for several data disks (reduces cost)

 Disadvantages:
 Each write to a block must update the corresponding parity block as well

21

RAID 3 example

22

RAID 3 example

23

RAID 3 example

24

RAID 3 example

25

RAID 3 example

 1. Read back data from other disks

 2. Recalculate lost data from parity code

 3. Rebuild data on lost disk
26

RAID 3 issues

 Terminology

 MTTF = mean time to failure

 MTTR = mean time to repair

 What is the MTTF of RAID?
 Both RAID 1 and RAID 3 tolerate the failure of a single disk

 As long as a second disk does not die while we are repairing the first

failure, we are in good shape!

 So, what is the probability of a second disk failure?

 P(2nd failure) ≈ MTTR / (MTTF of one disk / # disks -1)
 Assumes independent, exponential failure rates; see Patterson RAID paper for derivation

 10 disks, MTTF (disk) = 1000 days, MTTR = 1 day
 P(2nd failure) ≈ 1 day / (1000 / 9) = 0.009

 What is the performance of RAID 3?
 Check disk must be updated each time there is a write

 Problem: The check disk is then a performance bottleneck
 Only a single read/write can be done at once on the whole system!

27

RAID 5

 Another approach: Interleaved check blocks (“RAID 5”)

 Rotate the assignment of data blocks and check blocks across

disks

 Avoids the bottleneck of a single disk for storing check data

 Allows multiple reads/writes to occur in parallel (since different

disks affected)

28

Reliable distributed storage

 Today, giant data stores distributed across 100s of

thousands of disks across the world

 e.g., your mail on gmail

 “You know you have a large storage system when you

get paged at 1 AM because you only have a few

petabytes of storage left.”

 – a “note from the trenches” at Google

29

Reliable distributed storage

 Issues

 Failure is the common case

 Google reports 2-10% of disks fail per year

 Now multiply that by 60,000+ disks in a single warehouse...

 Must survive failure of not just a disk, but a rack of servers or a

whole data center

 Solutions

 Simple redundancy (2 or 3 copies of each file)

 e.g., Google GFS (2001)

 More efficient redundancy (analogous to RAID 3++)

 e.g., Google Colossus filesystem (~2010): customizable

replication including Reed-Solomon codes with 1.5x

redundancy

 More interesting tidbits: http://goo.gl/LwFIy

30

