
Copyright © University of Illinois CS 241 Staff 1

Network Applications

Today: Application level

Internet infrastructure

 HTTP (continued)

 Web caching

 Domain name system

 Network Address Translation

Copyright © University of Illinois CS 241 Staff 2

HTTP (Hypertext Transfer

Protocol)

 Web’s application

layer protocol

 Client/server model

 Client

 Browser that

requests, receives,

“displays” Web

objects

 Server

 Web server sends

objects in response to

requests

Copyright ©: University of Illinois CS 241 Staff 3

PC running

Explorer

Server

running

Apache Web

server

Mac running

Chrome

CS 241

HTTP Request Message

 Two types of HTTP messages: request, response

 ASCII (human-readable format)

 HTTP request message:

4

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

 (extra carriage return, line feed)

request line

(GET, POST,

HEAD commands)

header

 lines

Carriage return,

line feed

indicates end

of message
CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP Response Message

5

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line

(protocol

status code

status phrase)

header

 lines

data, e.g.,

requested

HTML file

CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP response status codes

 In first line in server->client response message

 A few sample codes

6

200 OK request succeeded, requested object later in

this message

301 Moved

Permanently

requested object moved, new location

specified later in this message (Location:),

client automatically retrieves new URL

400 Bad Request request message not understood by server

404 Not Found requested document not found on this server

505 HTTP Version

Not Supported

CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP response status codes

 In first line in server->client response message

 A few sample codes

 More in the illustrated guide...

 http://tinyurl.com/cvyepwt

7 CS 241 Copyright ©: University of Illinois CS 241 Staff

Trying out HTTP (client side)

For Yourself

1. Telnet to your favorite Web server

telnet www.cs.illinois.edu 80

2. Type in a GET HTTP request
GET /class/su12/cs241/index.html

HTTP/1.0

3. Look at response message sent by

HTTP server!

8

Opens TCP connection to port 80

(default HTTP server port) at
www.cs.illinois.edu.

Anything typed in sent
to port 80 at cs.illinois.edu

By typing this in (hit carriage

return twice), you send

this minimal (but complete)

GET request to HTTP server

CS 241 Copyright ©: University of Illinois CS 241 Staff

User-server State: Cookies

 Many major Web sites

use cookies

 Four components

1. Cookie header line of

HTTP response message

2. Cookie header line in

HTTP request message

3. Cookie file kept on user’s

host, managed by user’s

browser

4. Back-end database at

Web site

 Example

 Alice always accesses

Internet from PC

 Visits specific e-

commerce site for first

time

 When initial HTTP

requests arrives at site,

site creates:

 unique ID

 entry in backend

database for ID

9 CS 241 Copyright ©: University of Illinois CS 241 Staff

Cookies

 What cookies can bring

 Authorization

 Shopping carts

 Recommendations

 User session state (Web e-

mail)

 How to keep “state”

 Protocol endpoints: maintain

state at sender/receiver over

multiple transactions

 cookies: http messages

carry state

 Cookies and

privacy

 Cookies permit

sites to learn a lot

about you

 You may supply

name and e-mail

to sites

10 CS 241 Copyright ©: University of Illinois CS 241 Staff

Cookies: Keeping “State”

11

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg

Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access
ebay 8734

amazon 1678

backend

database

CS 241 Copyright ©: University of Illinois CS 241 Staff

Web infrastructure: Caches

Copyright © University of Illinois CS 241 Staff 12

Web Caches (Proxy Servers)

 Goal

 Satisfy client request without involving origin

server

 Steps

 User sets browser option: Web accesses via

cache

 Browser sends all HTTP requests to cache

 If object in cache: cache returns object

 Else: cache requests object from origin server, then

returns object to client

13 CS 241 Copyright ©: University of Illinois CS 241 Staff

Web Caches (Proxy Server)

14

client

Proxy

server

client
origin

server

origin

server

CS 241 Copyright ©: University of Illinois CS 241 Staff

More about Web Caching

 Cache

 Acts as both client and

server

 Typically installed by

ISP (university,

company, residential

ISP)

 Why Web caching?

 Reduce response time

for client request

 Reduce traffic on an

institution’s access link.

 Internet dense with

caches

 Enables “poor” content

providers to effectively

deliver content

Copyright ©: University of Illinois CS 241 Staff 15 CS 241

Caching Example

 Assumptions

 Average object size =

100,000 bits

 Average request rate

from institution’s

browsers to origin

servers = 15/sec

 Delay from institutional

router to any origin

server and back to

router = 2 sec

16

origin

servers

public

 Internet

institutional

network
10 Mbps LAN

1.5 Mbps

access link

institutional

cache

CS 241 Copyright ©: University of Illinois CS 241 Staff

100,000 bits

X 15/sec

=

1.5 Mbps

2 sec

 Consequences

 Utilization on LAN = 15%

 Utilization on access link

= 100%

 total delay = Internet

delay + access delay +

LAN delay

 = 2 sec + minutes +

milliseconds

Caching Example

 Consequences

 Utilization on LAN =

 Utilization on access link

=

 total delay =

 =

17

origin

servers

public

 Internet

institutional

network
10 Mbps LAN

1.5 Mbps

access link

institutional

cache

CS 241 Copyright ©: University of Illinois CS 241 Staff

100,000 bits

X 15/sec

=

1.5 Mbps

2 sec

Caching Example

 Possible solution

 Increase bandwidth of

access link to 10 Mbps

 Consequence

 Utilization on LAN =

 Utilization on access link

=

 Total delay = Internet

delay + access delay +

LAN delay

 =

18

origin

servers

public

 Internet

institutional

network
10 Mbps LAN

10 Mbps

access link

institutional

cache

CS 241 Copyright ©: University of Illinois CS 241 Staff

 Possible solution

 Increase bandwidth of

access link to 10 Mbps

 Consequence

 Utilization on LAN = 15%

 Utilization on access link

= 15%

 Total delay = Internet

delay + access delay +

LAN delay

 = 2 sec + msecs + msecs

 Often a costly upgrade

100,000 bits

X 15/sec

=

1.5 Mbps

2 sec

origin

servers

public

 Internet

institutional

network
10 Mbps LAN

1.5 Mbps

access link

institutional

cache

Caching Example

 Possible solution: Cache

 Assume hit rate is 0.4

 40% satisfied immediately

 60% satisfied by origin server

 Consequence

 Utilization on access link =

 Total avg delay = Internet

delay + access delay +

LAN delay

=

19 CS 241 Copyright ©: University of Illinois CS 241 Staff

100,000 bits

X 15/sec

=

1.5 Mbps

2 sec

 Possible solution: Cache

 Assume hit rate is 0.4

 40% satisfied immediately

 60% satisfied by origin server

 Consequence

 Utilization on access link =

60%, resulting in negligible

delays (say 10 msec)

 Total avg delay = Internet

delay + access delay +

LAN delay

= .6*(2.01) secs +

.4*milliseconds < 1.4 secs

Practicalities: Conditional GET

 Goal

 Don’t send if cache

has up-to-date version

 Cache

 Specify date of cached

copy in HTTP request

 If-modified-

since: <date>

 Server

 Response contains no

object if up-to-date:

 HTTP/1.0 304 Not

Modified

20

cache server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

CS 241 Copyright ©: University of Illinois CS 241 Staff

No Free Lunch: Problems of

Web Caching

 The major issue: maintaining

consistency

 Two ways

 Pull

 Web caches periodically polls the web

server to see if a document is modified

 Push

 Server gives a copy of a web page to a

web cache

 Sign a lease with an expiration time

 If web page is modified before the

lease, server notifies cache

CS 241 Copyright ©: University of Illinois CS 241 Staff 21

Which solution

would you

implement?

22

Content distribution networks

Stanford

Berkeley

Gatech
Stan1

Stan2

CMU

Berk1

Berk2

= CDN-owned server

= router

Slide thanks in part to Jennifer Rexford,

Ion Stoica, Vern Paxson, and Scott Shenker

23

The Domain Name System

Slides thanks in part to Jennifer Rexford,

Ion Stoica, Vern Paxson, and Scott Shenker

24

Host Names vs. IP addresses

 Host names

 Mnemonic name appreciated by humans

 Variable length, full alphabet of characters

 Provide little (if any) information about physical location

 Examples: www.cnn.com and bbc.co.uk

 IP addresses

 Numerical address appreciated by routers

 Fixed length, binary number

 Hierarchical, related to host location

 Examples: 64.236.16.20 and 212.58.224.131

25

Separating Naming and

Addressing

 Names are easier to remember
 cnn.com vs. 64.236.16.20 (but not shortened urls)

 Addresses can change underneath
 Move www.cnn.com to 4.125.91.21

 E.g., renumbering when changing providers

 Name could map to multiple IP addresses
 www.cnn.com to multiple (8) replicas of the Web site

 Enables

 Load-balancing

 Reducing latency by picking nearby servers

 Tailoring content based on requester’s location/identity

 Multiple names for the same address
 E.g., aliases like www.cnn.com and cnn.com

26

Domain Name System (DNS)

 Properties of DNS

 Hierarchical name space divided into zones

 Zones distributed over collection of DNS servers

 Hierarchy of DNS servers

 Root (hardwired into other servers)

 Top-level domain (TLD) servers

 Authoritative DNS servers

 Performing the translations

 Local DNS servers

 Resolver software

Distributed, Hierarchical

Database

 Client wants IP for www.amazon.com
 Client queries a root server to find com DNS server

 Client queries com DNS server to get amazon.com DNS server

 Client queries amazon.com DNS server to get IP address for

www.amazon.com

27

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

uiuc.edu

DNS servers

umass.edu

DNS servers

yahoo.com

DNS servers

amazon.com

DNS servers

pbs.org

DNS servers

CS 241 Copyright ©: University of Illinois CS 241 Staff

28

DNS Root
 Located in Virginia, USA

 How do we make the root scale?

 Verisign, Dulles, VA

29

DNS Root Servers
 13 root servers (see http://www.root-servers.org/)

 Labeled A through M
 Does this scale?

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA

E NASA Mt View, CA

F Internet Software

 Consortium

 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign

30

DNS Root Servers

 13 root servers each replicated via any-casting (localized

routing for addresses)

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA

E NASA Mt View, CA

F Internet Software

 Consortium,

 Palo Alto, CA

 (and 37 other locations)

I Autonomica, Stockholm

(plus 29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo

 plus Seoul, Paris,

 San Francisco

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)

D U Maryland College Park, MD

G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign (21 locations)

TLD and Authoritative Servers

 Top-level domain (TLD) servers

 Responsible for com, org, net, edu, etc, and all top-level

country domains uk, fr, ca, jp.

 Network Solutions maintains servers for com TLD

 Educause for edu TLD

 Authoritative DNS servers

 Organization’s DNS servers

 Provide authoritative hostname to IP mappings for

organization’s servers (e.g., Web, mail).

 Can be maintained by organization or service provider

31 CS 241 Copyright ©: University of Illinois CS 241 Staff

32

Local Name Server

 One per ISP (residential ISP, company, university)

 Also called “default name server”

 When host makes DNS query, query is sent to its

local DNS server

 Acts as proxy, forwards query into hierarchy

 Reduces lookup latency for commonly searched

hostnames

 Hosts learn local name server via...

 DHCP (same protocol that tells host its IP address)

 Static configuration (e.g., can use Google’s “local” name

service at 8.8.8.8 or 8.8.4.4)

CS 241 Copyright ©: University of Illinois CS 241 Staff

33

Applications’ use of DNS

 Client application

 Extract server name (e.g., from the URL)

 Do gethostbyname() to trigger resolver code,

sending message to local name server

 Server application (e.g. web server)

 Extract client IP address from socket

 Optional gethostbyaddr() to translate into name

DNS name

resolution example

 Host at cs.uiuc.edu

wants IP address for

gaia.cs.umass.edu

 Iterated query

 Contacted server

replies with name of

server to contact

 “I don’t know this

name, but ask this

server”

34

requesting host
cs.uiuc.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.uiuc.edu

1

2
3

4

5

6
authoritative

DNS server

7
8

TLD DNS

server

CS 241 Copyright ©: University of Illinois CS 241 Staff

dns.cs.umass.edu

DNS: Caching

 Once (any) name server learns

mapping, it caches mapping

 Cache entries timeout (disappear) after

some time

 TLD servers typically cached in local

name servers

 Thus root name servers not often visited

35 CS 241 Copyright ©: University of Illinois CS 241 Staff

Network Address Translation

Copyright © University of Illinois CS 241 Staff 36

NAT: Network Address

Translation

 Approach

 Assign one router a global IP address

 Assign internal hosts local IP addresses

 Change IP Headers

 IP addresses (and possibly port numbers) of IP datagrams

are replaced at the boundary of a private network

 Enables hosts on private networks to communicate with

hosts on the Internet

 Run on routers that connect private networks to the public

Internet

CS 241 Copyright ©: University of Illinois CS 241 Staff 37

NAT: Network Address

Translation

 Outgoing packet

 Source IP address (private IP) replaced by

global IP address maintained by NAT router

 Incoming packet

 Destination IP address (global IP of NAT

router) replaced by appropriate private IP

address

CS 241 Copyright ©: University of Illinois CS 241 Staff 38

What address do the remote

hosts respond to?

NAT router caches translation

table:

(source IP address, port #) 

(NAT IP address, new port #)

NAT: Network Address

Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345

D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1

sends datagram to

128.119.40, 80

NAT translation table

WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345

…… ……

S: 128.119.40.186, 80

D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001

D: 128.119.40.186, 80 2

2: NAT router

changes datagram

source addr from

10.0.0.1, 3345 to

138.76.29.7, 5001,

updates table

S: 128.119.40.186, 80

D: 138.76.29.7, 5001

3

3: Reply arrives

 dest. address:

 138.76.29.7, 5001

4: NAT router

changes datagram

dest addr from

138.76.29.7, 5001 to 10.0.0.1, 3345
CS 241 39 Copyright ©: University of Illinois CS 241 Staff

NAT: Benefits

 Local network uses just one (or a few) IP address

as far as outside world is concerned

 No need to be allocated range of addresses from ISP

 Just one IP address is used for all devices

 Or a few, in a large private enterprise network

 16-bit port-number field: 60,000 simultaneous connections with a

single LAN-side address!

 Can change addresses of devices in local network without

notifying outside world

 Can change ISP without changing addresses of devices in

local network

 Devices inside local net not explicitly addressable, visible

by outside world (a security plus)

 CS 241 40 Copyright ©: University of Illinois CS 241 Staff

NAT: Benefits

 Load balancing

 Balance the load on a set of identical servers, which are

accessible from a single IP address

 NAT solution

 Servers are assigned private addresses

 NAT acts as a proxy for requests to the server from the

public network

 NAT changes the destination IP address of arriving

packets to one of the private addresses for a server

 Balances load on the servers by assigning addresses in a

round-robin fashion

CS 241 Copyright ©: University of Illinois CS 241 Staff 41

NAT: Consequences

 End-to-end connectivity broken

 NAT destroys universal end-to-end reachability of hosts on

the Internet

 A host in the public Internet often cannot initiate

communication to a host in a private network

 Even worse when two hosts that are in different private

networks need to communicate with each other

CS 241 42 Copyright ©: University of Illinois CS 241 Staff

NAT: Consequences

 Performance worsens

 Modifying the IP header by changing the IP address

requires that NAT boxes recalculate the IP header

checksum

 Modifying port number requires that NAT boxes

recalculate TCP checksum

 Fragmentation issues

 Datagrams fragmented before NAT device must not be

assigned different IP addresses or different port numbers

CS 241 43 Copyright ©: University of Illinois CS 241 Staff

NAT: Consequences

 Broken if IP address in application data

 Applications often carry IP addresses in the payload of the

application data

 No longer work across a private-public network boundary

 Hack: Some NAT devices inspect the payload of widely

used application layer protocols and, if an IP address is

detected in the application-layer header or the application

payload, translate the address according to the address

translation table

CS 241 44 Copyright ©: University of Illinois CS 241 Staff

NAT: Consequences

 Ossification of Internet protocols

 NAT must be aware of port numbers which are inside

transport header

 Existing NATs don’t support your fancy new transport

protocol

 and might even block standard protocols like UDP

 Result: Difficult to invent new transport protocols

 ...unless they just pretend to be TCP

CS 241 45 Copyright ©: University of Illinois CS 241 Staff

