
Copyright © University of Illinois CS 241 Staff 1

Network Programming

Network Programming

 As an Internet user… you already

know a lot about the Internet!

Copyright © University of Illinois CS 241 Staff 2

Terminology

 google.com

 facebook.com

 illinois.edu

Copyright © University of Illinois CS 241 Staff 3

Domain Names

Terminology

 http://google.com/

 http://facebook.com/

 http://illinois.edu/

Copyright © University of Illinois CS 241 Staff 4

Uniform Resource Locators (URLs)

Terminology

 http://google.com/

 http://facebook.com/

 http://illinois.edu/

Copyright © University of Illinois CS 241 Staff 5

Protocol

Hypertext Transfer Protocol (HTTP)

Terminology

 google.com 74.125.225.70

 facebook.com 66.220.158.11

 illinois.edu 128.174.4.87

Copyright © University of Illinois CS 241 Staff 6

Internet Protocol (IP) Addresses

Terminology

 google.com 74.125.225.70

 facebook.com 66.220.158.11

 illinois.edu 128.174.4.87

 How are these addresses translated?

Copyright © University of Illinois CS 241 Staff 7

Domain Name System (DNS) via

Domain Name Servers

Client-Server Model

 Server: google

 Client: you
 (and everyone else)

Copyright © University of Illinois CS 241 Staff 8

google.com

user user user user user

Client-Server Model

 Properties?
 Client:

 Server:

Copyright © University of Illinois CS 241 Staff 9

server

client client client client client

Client-Server Model

 Properties?
 Client:

 Initiates contact

 Waits for server’s

response

 Server:

 Well-known name

 Waits for contact

 Processes requests,

sends replies

Copyright © University of Illinois CS 241 Staff 10

server

client client client client client

How?

How?

Client-Server Model

 Properties?
 Client:

 Initiates contact

 Waits for server’s

response

 Server:

 Well-known name

 Waits for contact

 Processes requests,

sends replies

Copyright © University of Illinois CS 241 Staff 11

server

client client client client client

How?

How?

Network Socket

 All communications across a network

happen over a network socket.

 Properties:

Copyright © University of Illinois CS 241 Staff 12

Network Socket

 All communications across a network

happen over a network socket.

 Properties:

 A form of Inner-Process Communications

 Bi-directional

 Connection made via a socket address

Copyright © University of Illinois CS 241 Staff 13

Socket Address

 A socket address is:

 IP Address

 Port Number

 A socket must also bind to a specific

transport-layer protocol.

 TCP

 UDP

Copyright © University of Illinois CS 241 Staff 14

Port Number?

 IP Addresses

 Get a packet to the

destination computer

 Port Numbers

 Get a packet to the

destination process

Copyright © University of Illinois CS 241 Staff 15 15

client/server

Port Numbers

 A port number is…

 An 16-bit unsigned integer
 0 - 65535

 A unique resource shared across the

entire system

 Two processes cannot both utilize port 80.

 Ports below 1024 are reserved
 Requires elevated privileges on many OSs

 Widely used applications have their own port number.

Copyright © University of Illinois CS 241 Staff 16

Application Port Numbers

 When we connect to google.com, what

port on google.com are we connecting

to?

Copyright © University of Illinois CS 241 Staff 17

We are connected to an HTTP server.

Public HTTP servers always listen

for new connections on port 80.

Initializing a socket…

 Two ways to initialize a socket:

1. To listen for an incoming connection

 Often called a “Server Socket”

 2. To connect to a “server socket”

Copyright © University of Illinois CS 241 Staff 18

Client-Server Model

Copyright © University of Illinois CS 241 Staff 19

server client

 Server:

 Creates a socket to listen for incoming

connections.

 Must listen on a specific protocol/port.

TCP/80

Client-Server Model

Copyright © University of Illinois CS 241 Staff 20

server client

 Client:

 Creates a socket to connect to a remote

computer.

TCP/80

Client-Server Model

Copyright © University of Illinois CS 241 Staff 21

server client

 Client:

 Requests a connection to TCP port 80 on

74.125.225.70.

TCP/80

Client-Server Model

Copyright © University of Illinois CS 241 Staff 22

server client

 Server:

 Accepts the connection.

TCP/80

Client-Server Model

Copyright © University of Illinois CS 241 Staff 23

server client

 Server:

 Spawns a new socket to communicate

directly with the newly connected client.

 Allows other clients to connect.

TCP/80

Two way

communications

The sockaddr structure

 Earlier… a socket address is:

 IP Address

 Port Number

 This is represented in a special struct
in C called a sockaddr.

Copyright © University of Illinois CS 241 Staff 24

Address Access/Conversion

Functions

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo(const char *restrict node,

 const char *restrict service,

 const struct addrinfo *restrict hints,

 struct addrinfo **restrict res);

 Parameters

 node: host name or IP address to connect to

 service: a port number (“80“) or the name of a service

(found /etc/services: “http”)

 hints: a filled out struct addrinfo

CS 241 Copyright ©: University of Illinois CS 241 Staff 25

Example: Server

int status;

struct addrinfo hints;

struct addrinfo *servinfo; // point to the results

memset(&hints, 0, sizeof hints); // empty struct

hints.ai_family = AF_UNSPEC; // IPv4 or IPv6

hints.ai_socktype = SOCK_STREAM; // TCP stream sockets

hints.ai_flags = AI_PASSIVE; // fill in my IP for me

if ((status = getaddrinfo(NULL, "3490", &hints, &servinfo)) != 0) {

 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(status));

 exit(1);

}

// servinfo now points to a linked list of 1 or more struct addrinfos

// ... do everything until you don't need servinfo anymore

freeaddrinfo(servinfo); // free the linked-list

CS 241 Copyright ©: University of Illinois CS 241 Staff 26

Example: Client

int status;

struct addrinfo hints;

struct addrinfo *servinfo; // will point to the results

memset(&hints, 0, sizeof hints); // make sure the struct is empty

hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPv6

hints.ai_socktype = SOCK_STREAM; // TCP stream sockets

// get ready to connect

status = getaddrinfo("www.example.net", "3490", &hints, &servinfo);

// servinfo now points to a linked list of 1 or more struct addrinfos

// etc.

CS 241 Copyright ©: University of Illinois CS 241 Staff 27

Creating a “Server Socket”

socket(): Creates a new socket for a

 specific protocol (eg: TCP)

bind(): Binds the socket to a specific

 port (eg: 80)

listen(): Moves the socket into a state

 of listening for incoming

 connections.

accept(): Accepts an incoming

 connection. Copyright © University of Illinois CS 241 Staff 28

Creating a “Client Socket”

socket(): Creates a new socket for a

 specific protocol (eg: TCP)

connect():

 Makes a network connection

 to a specified IP address and

 port.

Copyright © University of Illinois CS 241 Staff 29

CS 241 Copyright ©: University of Illinois CS 241 Staff 30

Functions: socket

int socket (int family, int type, int
protocol);

 Create a socket.
 Returns file descriptor or -1. Also sets errno on failure.

 family: address family (namespace)
 AF_INET for IPv4

 other possibilities: AF_INET6 (IPv6), AF_UNIX or AF_LOCAL
(Unix socket), AF_ROUTE (routing)

 type: style of communication
 SOCK_STREAM for TCP (with AF_INET)

 SOCK_DGRAM for UDP (with AF_INET)

 protocol: protocol within family
 typically 0

CS 241 Copyright ©: University of Illinois CS 241 Staff 31

Example: socket

int sockfd, new_fd; /* listen on sock_fd, new

 connection on new_fd */

struct sockaddr_in my_addr; /* my address */

struct sockaddr_in their_addr; /* connector addr */

int sin_size;

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0))==-1){

 perror("socket");

 exit(1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 32

Function: bind

int bind (int sockfd, struct sockaddr*

myaddr, int addrlen);

 Bind a socket to a local IP address and port number
 Returns 0 on success, -1 and sets errno on failure

 sockfd: socket file descriptor (returned from socket)

 myaddr: includes IP address and port number

 IP address: set by kernel if value passed is INADDR_ANY,
else set by caller

 port number: set by kernel if value passed is 0, else set by
caller

 addrlen: length of address structure

 = sizeof (struct sockaddr_in)

CS 241 Copyright ©: University of Illinois CS 241 Staff 33

Example: bind

my_addr.sin_family = AF_INET; // host byte order

my_addr.sin_port = htons(MYPORT);// short, network

 // byte order

my_addr.sin_addr.s_addr = htonl(INADDR_ANY);

// automatically fill with my IP

bzero(&(my_addr.sin_zero), 8); // zero struct

if (bind(sockfd, (struct sockaddr *)&my_addr,

 sizeof(struct sockaddr)) == -1) {

 perror("bind");

 exit(1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 34

Reserved Ports

Keyword Decimal Description

------- ------- -----------

 0/tcp Reserved

 0/udp Reserved

tcpmux 1/tcp TCP Port Service

tcpmux 1/udp TCP Port Service

echo 7/tcp Echo

echo 7/udp Echo

systat 11/tcp Active Users

systat 11/udp Active Users

daytime 13/tcp Daytime (RFC 867)

daytime 13/udp Daytime (RFC 867)

qotd 17/tcp Quote of the Day

qotd 17/udp Quote of the Day

chargen 19/tcp Character Generator

chargen 19/udp Character Generator

ftp-data 20/tcp File Transfer Data

ftp-data 20/udp File Transfer Data

ftp 21/tcp File Transfer Ctl

ftp 21/udp File Transfer Ctl

ssh 22/tcp SSH Remote Login

ssh 22/udp SSH Remote Login

telnet 23/tcp Telnet

telnet 23/udp Telnet

smtp 25/tcp Simple Mail Transfer

smtp 25/udp Simple Mail Transfer

Keyword Decimal Description

------- ------- -----------

time 37/tcp Time

time 37/udp Time

name 42/tcp Host Name Server

name 42/udp Host Name Server

nameserver 42/tcp Host Name Server

nameserver 42/udp Host Name Server

nicname 43/tcp Who Is

nicname 43/udp Who Is

domain 53/tcp Domain Name Server

domain 53/udp Domain Name Server

whois++ 63/tcp whois++

whois++ 63/udp whois++

gopher 70/tcp Gopher

gopher 70/udp Gopher

finger 79/tcp Finger

finger 79/udp Finger

http 80/tcp World Wide Web HTTP

http 80/udp World Wide Web HTTP

www 80/tcp World Wide Web HTTP

www 80/udp World Wide Web HTTP

www-http 80/tcp World Wide Web HTTP

www-http 80/udp World Wide Web HTTP

kerberos 88/tcp Kerberos

kerberos 88/udp Kerberos

CS 241 Copyright ©: University of Illinois CS 241 Staff 35

Functions: listen

int listen (int sockfd, int backlog);

 Put socket into passive state (wait for connections

rather than initiate a connection)

 Returns 0 on success, -1 and sets errno on failure

 sockfd: socket file descriptor (returned from socket)

 backlog: bound on length of unaccepted connection

queue (connection backlog); kernel will cap, thus better to

set high

 Example:
 if (listen(sockfd, BACKLOG) == -1) {

 perror("listen");

 exit(1);

 }

CS 241 Copyright ©: University of Illinois CS 241 Staff 36

Establishing a Connection

 Include file <sys/socket.h>

int connect (int sockfd, struct

sockaddr* servaddr, int addrlen);

 Connect to another socket.

int accept (int sockfd, struct sockaddr*

cliaddr, int* addrlen);

 Accept a new connection. Returns file descriptor
or -1.

CS 241 Copyright ©: University of Illinois CS 241 Staff 37

Functions: connect

int connect (int sockfd, struct

sockaddr* servaddr, int addrlen);

 Connect to another socket.

 Returns 0 on success, -1 and sets errno on failure

 sockfd: socket file descriptor (returned from socket)

 servaddr: IP address and port number of server

 addrlen: length of address structure

 = sizeof (struct sockaddr_in)

 Can use with UDP to restrict incoming datagrams

and to obtain asynchronous errors

CS 241 Copyright ©: University of Illinois CS 241 Staff 38

Example: connect

their_addr.sin_family = AF_INET; /* interp’d by host */

their_addr.sin_port = htons (PORT);

their_addr.sin_addr = *((struct in_addr*)he->h_addr);

bzero (&(their_addr.sin_zero), 8);

/* zero rest of struct */

if (connect (sockfd, (struct sockaddr*)&their_addr,

 sizeof (struct sockaddr)) == -1) {

 perror (“connect”);

 exit (1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 39

Functions: accept

int accept (int sockfd, struct sockaddr* cliaddr,

int* addrlen);

 Block waiting for a new connection

 Returns file descriptor or -1 and sets errno on failure

 sockfd: socket file descriptor (returned from socket)

 cliaddr: IP address and port number of client (returned from
call)

 addrlen: length of address structure = pointer to int set to
sizeof (struct sockaddr_in)

 addrlen is a value-result argument

 the caller passes the size of the address structure, the kernel
returns the size of the client’s address (the number of bytes
written)

CS 241 Copyright ©: University of Illinois CS 241 Staff 40

Example: accept

sin_size = sizeof(struct sockaddr_in);

if ((new_fd = accept(sockfd, (struct sockaddr*)

 &their_addr, &sin_size)) == -1) {

 perror("accept");

 continue;

}

 How does the server know which client it is?

 their_addr.sin_addr contains the client’s IP address

 their_addr.port contains the client’s port number

 printf("server: got connection from %s\n",

 inet_ntoa(their_addr.sin_addr));

Functions: accept

 Notes

 After accept() returns a new socket

descriptor, I/O can be done using read() and

write()

 Why does accept() need to return a new

descriptor?

CS 241 Copyright ©: University of Illinois CS 241 Staff 41

CS 241 Copyright ©: University of Illinois CS 241 Staff 42

Sending and Receiving Data

int send(int sockfd, const void * buf,

size_t nbytes, int flags);

 Write data to a stream (TCP) or “connected”
datagram (UDP) socket.
 Returns number of bytes written or -1.

int recv(int sockfd, void *buf, size_t

nbytes, int flags);

 Read data from a stream (TCP) or “connected”
datagram (UDP) socket.
 Returns number of bytes read or -1.

CS 241 Copyright ©: University of Illinois CS 241 Staff 43

Functions: send

int send(int sockfd, const void * buf, size_t

nbytes, int flags);

 Send data un a stream (TCP) or “connected”
datagram (UDP) socket
 Returns number of bytes written or -1 and sets errno on

failure

 sockfd: socket file descriptor (returned from socket)

 buf: data buffer

 nbytes: number of bytes to try to write

 flags: control flags
 MSG_PEEK: get data from the beginning of the receive queue without

removing that data from the queue

CS 241 Copyright ©: University of Illinois CS 241 Staff 44

Functions: send

int send(int sockfd, const void * buf, size_t

nbytes, int flags);

 Example
len = strlen(msg);

bytes_sent = send(sockfd, msg, len, 0);

CS 241 Copyright ©: University of Illinois CS 241 Staff 45

Functions: recv

int recv(int sockfd, void *buf, size_t nbytes,

int flags);

 Read data from a stream (TCP) or “connected”

datagram (UDP) socket

 Returns number of bytes read or -1, sets errno on failure

 Returns 0 if socket closed

 sockfd: socket file descriptor (returned from socket)

 buf: data buffer

 nbytes: number of bytes to try to read

 flags: see man page for details; typically use 0

CS 241 Copyright ©: University of Illinois CS 241 Staff 46

Functions: recv

int recv(int sockfd, char* buf, size_t nbytes);

 Notes

 read blocks waiting for data from the client but does not

guarantee that sizeof(buf) is read

 Example
if((r = read(newfd, buf, sizeof(buf))) < 0) {

 perror(“read”); exit(1);

}

Sending and Receiving Data

 Datagram sockets aren't connected to a

remote host

 What piece of information do we need to give

before we send a packet?

 The destination/source address!

CS 241 Copyright ©: University of Illinois CS 241 Staff 47

CS 241 Copyright ©: University of Illinois CS 241 Staff 48

Sending and Receiving Data

int sendto (int sockfd, char* buf,

size_t nbytes, int flags, struct

sockaddr* destaddr, int addrlen);

 Send a datagram to another UDP socket.
 Returns number of bytes written or -1.

int recvfrom (int sockfd, char* buf,

size_t nbytes, int flags, struct

sockaddr* srcaddr, int* addrlen);

 Read a datagram from a UDP socket.
 Returns number of bytes read or -1.

CS 241 Copyright ©: University of Illinois CS 241 Staff 49

Functions: sendto

int sendto (int sockfd, char* buf, size_t nbytes,

int flags, struct sockaddr* destaddr, int

addrlen);

 Send a datagram to another UDP socket

 Returns number of bytes written or -1 and sets errno on failure

 sockfd: socket file descriptor (returned from socket)

 buf: data buffer

 nbytes: number of bytes to try to read

 flags: see man page for details; typically use 0

 destaddr: IP address and port number of destination socket

 addrlen: length of address structure

 = sizeof (struct sockaddr_in)

CS 241 Copyright ©: University of Illinois CS 241 Staff 50

Functions: sendto

int sendto (int sockfd, char* buf, size_t nbytes,

int flags, struct sockaddr* destaddr, int

addrlen);

 Example
n = sendto(sock, buf, sizeof(buf), 0,(struct

sockaddr *) &from,fromlen);

if (n < 0)

 perror("sendto");

 exit(1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 51

Functions: recvfrom

int recvfrom (int sockfd, char* buf, size_t
nbytes, int flags, struct sockaddr* srcaddr,
int* addrlen);

 Read a datagram from a UDP socket.
 Returns number of bytes read (0 is valid) or -1 and sets errno

on failure

 sockfd: socket file descriptor (returned from socket)

 buf: data buffer

 nbytes: number of bytes to try to read

 flags: see man page for details; typically use 0

 srcaddr: IP address and port number of sending socket
(returned from call)

 addrlen: length of address structure = pointer to int set to
sizeof (struct sockaddr_in)

CS 241 Copyright ©: University of Illinois CS 241 Staff 52

Functions: recvfrom

int recvfrom (int sockfd, char* buf, size_t
nbytes, int flags, struct sockaddr* srcaddr,
int* addrlen);

 Example
n = recvfrom(sock, buf, 1024, 0, (struct sockaddr

*)&from,&fromlen);

if (n < 0) {

 perror("recvfrom");

 exit(1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 53

Tearing Down a Connection

int close (int sockfd);

 Close a socket.

 Returns 0 on success, -1 and sets errno on failure.

int shutdown (int sockfd, int howto);

 Force termination of communication across a socket in

one or both directions.

 Returns 0 on success, -1 and sets errno on failure.

CS 241 Copyright ©: University of Illinois CS 241 Staff 54

Functions: close

int close (int sockfd);

 Close a socket

 Returns 0 on success, -1 and sets errno on failure

 sockfd: socket file descriptor (returned from socket)

 Closes communication on socket in both directions

 All data sent before close are delivered to other side

(although this aspect can be overridden)

 After close, sockfd is not valid for reading or

writing

CS 241 Copyright ©: University of Illinois CS 241 Staff 55

Functions: shutdown

int shutdown (int sockfd, int howto);

 Force termination of communication across a socket in one or
both directions

 Returns 0 on success, -1 and sets errno on failure

 sockfd: socket file descriptor (returned from socket)

 howto:

 SHUT_RD to stop reading

 SHUT_WR to stop writing

 SHUT_RDWR to stop both

 shutdown overrides the usual rules regarding duplicated
sockets, in which TCP teardown does not occur until all copies
have closed the socket

Note on close vs. shutdown

 close(): closes the socket but the connection is

still open for processes that shares this socket

 The connection stays opened both for read and write

 shutdown(): breaks the connection for all

processes sharing the socket

 A read will detect EOF, and a write will receive SIGPIPE

 shutdown() has a second argument how to close the

connection:

 0 means to disable further reading

 1 to disable writing

 2 disables both

CS 241 Copyright ©: University of Illinois CS 241 Staff 56

