
Copyright © University of Illinois CS 241 Staff 1 

Network Programming 



Network Programming 

 As an Internet user… you already 

know a lot about the Internet! 

 

Copyright © University of Illinois CS 241 Staff 2 



Terminology 

 google.com 

 facebook.com 

 illinois.edu 

Copyright © University of Illinois CS 241 Staff 3 

Domain Names 



Terminology 

 http://google.com/ 

 http://facebook.com/ 

 http://illinois.edu/ 

Copyright © University of Illinois CS 241 Staff 4 

Uniform Resource Locators (URLs) 



Terminology 

 http://google.com/ 

 http://facebook.com/ 

 http://illinois.edu/ 

Copyright © University of Illinois CS 241 Staff 5 

Protocol 

Hypertext Transfer Protocol (HTTP) 



Terminology 

 google.com  74.125.225.70 

 facebook.com  66.220.158.11 

 illinois.edu  128.174.4.87 

Copyright © University of Illinois CS 241 Staff 6 

Internet Protocol (IP) Addresses 



Terminology 

 google.com  74.125.225.70 

 facebook.com  66.220.158.11 

 illinois.edu  128.174.4.87 

 

 How are these addresses translated? 

Copyright © University of Illinois CS 241 Staff 7 

Domain Name System (DNS) via 

Domain Name Servers 



Client-Server Model 

 Server: google 

 Client: you 
    (and everyone else) 

Copyright © University of Illinois CS 241 Staff 8 

google.com 

user user user user user 



Client-Server Model 

 Properties? 
 Client: 

 

 

 

 Server: 

 

Copyright © University of Illinois CS 241 Staff 9 

server 

client client client client client 



Client-Server Model 

 Properties? 
 Client: 

 Initiates contact 

 Waits for server’s 

response 

 

 Server: 

 Well-known name 

 Waits for contact 

 Processes requests, 

sends replies 

 
Copyright © University of Illinois CS 241 Staff 10 

server 

client client client client client 



How? 

How? 

Client-Server Model 

 Properties? 
 Client: 

 Initiates contact 

 Waits for server’s 

response 

 

 Server: 

 Well-known name 

 Waits for contact 

 Processes requests, 

sends replies 

 
Copyright © University of Illinois CS 241 Staff 11 

server 

client client client client client 

How? 

How? 



Network Socket 

 All communications across a network 

happen over a network socket. 

 

 Properties: 

Copyright © University of Illinois CS 241 Staff 12 



Network Socket 

 All communications across a network 

happen over a network socket. 

 

 Properties: 

 A form of Inner-Process Communications 

 Bi-directional 

 Connection made via a socket address 

Copyright © University of Illinois CS 241 Staff 13 



Socket Address 

 A socket address is: 

 IP Address 

 Port Number 

 

 A socket must also bind to a specific 

transport-layer protocol. 

 TCP 

 UDP 

 

 

Copyright © University of Illinois CS 241 Staff 14 



Port Number? 

 IP Addresses 

 Get a packet to the 

destination computer 

 

 Port Numbers 

 Get a packet to the 

destination process 

 

Copyright © University of Illinois CS 241 Staff 15 15 

client/server 



Port Numbers 

 A port number is… 

 An 16-bit unsigned integer 
 0 - 65535 

 A unique resource shared across the 

entire system 

 Two processes cannot both utilize port 80. 

 Ports below 1024 are reserved 
 Requires elevated privileges on many OSs 

 Widely used applications have their own port number. 

Copyright © University of Illinois CS 241 Staff 16 



Application Port Numbers 

 When we connect to google.com, what 

port on google.com are we connecting 

to? 

Copyright © University of Illinois CS 241 Staff 17 

We are connected to an HTTP server. 

 

Public HTTP servers always listen 

for new connections on port 80. 



Initializing a socket… 

 Two ways to initialize a socket: 

 

1. To listen for an incoming connection 

 Often called a “Server Socket” 

 

    2. To connect to a “server socket” 

Copyright © University of Illinois CS 241 Staff 18 



Client-Server Model 

Copyright © University of Illinois CS 241 Staff 19 

server client 

 Server: 

 Creates a socket to listen for incoming 

connections. 

 Must listen on a specific protocol/port. 

TCP/80 



Client-Server Model 

Copyright © University of Illinois CS 241 Staff 20 

server client 

 Client: 

 Creates a socket to connect to a remote 

computer. 

TCP/80 



Client-Server Model 

Copyright © University of Illinois CS 241 Staff 21 

server client 

 Client: 

 Requests a connection to TCP port 80 on 

74.125.225.70.  

TCP/80 



Client-Server Model 

Copyright © University of Illinois CS 241 Staff 22 

server client 

 Server: 

 Accepts the connection. 

TCP/80 



Client-Server Model 

Copyright © University of Illinois CS 241 Staff 23 

server client 

 Server: 

 Spawns a new socket to communicate 

directly with the newly connected client. 

 Allows other clients to connect. 

TCP/80 

Two way 

communications  



The sockaddr structure 

 Earlier…  a socket address is: 

 IP Address 

 Port Number 

 

 This is represented in a special struct 
in C called a sockaddr. 

Copyright © University of Illinois CS 241 Staff 24 



Address Access/Conversion 

Functions 

#include <sys/types.h>  

#include <sys/socket.h>  

#include <netdb.h>  

int getaddrinfo(const char *restrict node, 

       const char *restrict service, 

       const struct addrinfo *restrict hints, 

       struct addrinfo **restrict res); 

 Parameters 

 node: host name or IP address to connect to 

 service: a port number (“80“) or the name of a service 

(found /etc/services: “http”) 

 hints: a filled out struct addrinfo 

CS 241 Copyright ©: University of Illinois CS 241 Staff 25 



Example: Server 

int status;  

struct addrinfo hints;  

struct addrinfo *servinfo;   // point to the results  

 

memset(&hints, 0, sizeof hints);   // empty struct 

hints.ai_family = AF_UNSPEC;   // IPv4 or IPv6  

hints.ai_socktype = SOCK_STREAM;   // TCP stream sockets  

hints.ai_flags = AI_PASSIVE;   // fill in my IP for me  

 

if ((status = getaddrinfo(NULL, "3490", &hints, &servinfo)) != 0) {  

 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(status));  

 exit(1);  

}  

// servinfo now points to a linked list of 1 or more struct addrinfos  

// ... do everything until you don't need servinfo anymore ....  

 

freeaddrinfo(servinfo);    // free the linked-list 

CS 241 Copyright ©: University of Illinois CS 241 Staff 26 



Example: Client 

int status;  

struct addrinfo hints;  

struct addrinfo *servinfo;  // will point to the results  

 

memset(&hints, 0, sizeof hints);  // make sure the struct is empty  

hints.ai_family = AF_UNSPEC;  // don't care IPv4 or IPv6  

hints.ai_socktype = SOCK_STREAM;  // TCP stream sockets  

 

// get ready to connect  

status = getaddrinfo("www.example.net", "3490", &hints, &servinfo);  

 

// servinfo now points to a linked list of 1 or more struct addrinfos  

 

// etc. 

CS 241 Copyright ©: University of Illinois CS 241 Staff 27 



Creating a “Server Socket” 

socket(): Creates a new socket for a 

  specific protocol (eg: TCP) 

bind(): Binds the socket to a specific 

  port (eg: 80) 

listen(): Moves the socket into a state 

  of listening for incoming   

  connections. 

accept(): Accepts an incoming 

  connection. Copyright © University of Illinois CS 241 Staff 28 



Creating a “Client Socket” 

socket(): Creates a new socket for a 

  specific protocol (eg: TCP) 

connect(): 

   Makes a network connection 

  to a specified IP address and 

  port. 

Copyright © University of Illinois CS 241 Staff 29 



CS 241 Copyright ©: University of Illinois CS 241 Staff 30 

Functions: socket 

int socket (int family, int type, int 
protocol); 

 Create a socket.  
 Returns file descriptor or -1. Also sets errno on failure. 

 family: address family (namespace) 
 AF_INET for IPv4 

 other possibilities: AF_INET6 (IPv6), AF_UNIX or AF_LOCAL 
(Unix socket), AF_ROUTE (routing) 

 type: style of communication 
 SOCK_STREAM for TCP (with AF_INET) 

 SOCK_DGRAM for UDP (with AF_INET) 

 protocol: protocol within family 
 typically 0 



CS 241 Copyright ©: University of Illinois CS 241 Staff 31 

Example: socket 

int sockfd, new_fd; /* listen on sock_fd, new  

      connection on new_fd */ 

struct sockaddr_in my_addr;   /* my address     */ 

struct sockaddr_in their_addr; /* connector addr */ 

int sin_size; 

 

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0))==-1){ 

 perror("socket"); 

 exit(1); 

} 



CS 241 Copyright ©: University of Illinois CS 241 Staff 32 

Function: bind 

int bind (int sockfd, struct sockaddr* 

myaddr, int addrlen); 

 Bind a socket to a local IP address and port number  
 Returns 0 on success, -1 and sets errno on failure 

 sockfd: socket file descriptor (returned from socket) 

 myaddr: includes IP address and port number 

 IP address: set by kernel if value passed is INADDR_ANY, 
else set by caller 

 port number: set by kernel if value passed is 0, else set by 
caller 

 addrlen: length of address structure 

 = sizeof (struct sockaddr_in) 



CS 241 Copyright ©: University of Illinois CS 241 Staff 33 

Example: bind 

my_addr.sin_family = AF_INET;    // host byte order 

my_addr.sin_port = htons(MYPORT);// short, network  

           // byte order  

my_addr.sin_addr.s_addr = htonl(INADDR_ANY); 

 

// automatically fill with my IP 

bzero(&(my_addr.sin_zero), 8);   // zero struct 

 

if (bind(sockfd, (struct sockaddr *)&my_addr, 

      sizeof(struct sockaddr)) == -1) { 

 perror("bind"); 

 exit(1); 

} 



CS 241 Copyright ©: University of Illinois CS 241 Staff 34 

Reserved Ports 

Keyword         Decimal    Description                      

-------         -------    -----------                      

                  0/tcp    Reserved 

                  0/udp    Reserved 

tcpmux            1/tcp    TCP Port Service 

tcpmux            1/udp    TCP Port Service 

echo              7/tcp    Echo 

echo              7/udp    Echo 

systat           11/tcp    Active Users 

systat           11/udp    Active Users 

daytime          13/tcp    Daytime (RFC 867) 

daytime          13/udp    Daytime (RFC 867) 

qotd             17/tcp    Quote of the Day 

qotd             17/udp    Quote of the Day 

chargen          19/tcp    Character Generator 

chargen          19/udp    Character Generator 

ftp-data         20/tcp    File Transfer Data 

ftp-data         20/udp    File Transfer Data 

ftp              21/tcp    File Transfer Ctl 

ftp              21/udp    File Transfer Ctl 

ssh              22/tcp    SSH Remote Login 

ssh              22/udp    SSH Remote Login 

telnet           23/tcp    Telnet 

telnet           23/udp    Telnet 

smtp             25/tcp    Simple Mail Transfer 

smtp             25/udp    Simple Mail Transfer 

 

Keyword         Decimal    Description       

-------         -------    -----------  

time             37/tcp    Time 

time             37/udp    Time 

name             42/tcp    Host Name Server 

name             42/udp    Host Name Server 

nameserver       42/tcp    Host Name Server 

nameserver       42/udp    Host Name Server 

nicname          43/tcp    Who Is 

nicname          43/udp    Who Is 

domain           53/tcp    Domain Name Server 

domain           53/udp    Domain Name Server 

whois++          63/tcp    whois++ 

whois++          63/udp    whois++ 

gopher           70/tcp    Gopher 

gopher           70/udp    Gopher 

finger           79/tcp    Finger 

finger           79/udp    Finger 

http             80/tcp    World Wide Web HTTP 

http             80/udp    World Wide Web HTTP 

www              80/tcp    World Wide Web HTTP 

www              80/udp    World Wide Web HTTP 

www-http         80/tcp    World Wide Web HTTP 

www-http         80/udp    World Wide Web HTTP 

kerberos         88/tcp    Kerberos 

kerberos         88/udp    Kerberos 

 



CS 241 Copyright ©: University of Illinois CS 241 Staff 35 

Functions: listen 

int listen (int sockfd, int backlog); 

 Put socket into passive state (wait for connections 

rather than initiate a connection) 

 Returns 0 on success, -1 and sets errno on failure 

 sockfd: socket file descriptor (returned from socket) 

 backlog: bound on length of unaccepted connection 

queue (connection backlog); kernel will cap, thus better to 

set high 

 Example: 
  if (listen(sockfd, BACKLOG) == -1) { 

   perror("listen"); 

   exit(1); 

  } 



CS 241 Copyright ©: University of Illinois CS 241 Staff 36 

Establishing a Connection 

 Include file <sys/socket.h> 

 

int connect (int sockfd, struct 

sockaddr* servaddr, int addrlen); 

 Connect to another socket. 
 

int accept (int sockfd, struct sockaddr* 

cliaddr, int* addrlen); 

 Accept a new connection. Returns file descriptor 
or -1. 



CS 241 Copyright ©: University of Illinois CS 241 Staff 37 

Functions: connect 

int connect (int sockfd, struct 

sockaddr* servaddr, int addrlen); 

 Connect to another socket. 

 Returns 0 on success, -1 and sets errno on failure 

 sockfd: socket file descriptor (returned from socket) 

 servaddr: IP address and port number of server 

 addrlen: length of address structure 

 = sizeof (struct sockaddr_in) 

 Can use with UDP to restrict incoming datagrams 

and to obtain asynchronous errors 



CS 241 Copyright ©: University of Illinois CS 241 Staff 38 

Example: connect 

their_addr.sin_family = AF_INET; /* interp’d by host */ 

their_addr.sin_port = htons (PORT); 

their_addr.sin_addr = *((struct in_addr*)he->h_addr); 

 

bzero (&(their_addr.sin_zero), 8); 

/* zero rest of struct */ 

 

if (connect (sockfd, (struct sockaddr*)&their_addr, 

            sizeof (struct sockaddr)) == -1) { 

 perror (“connect”); 

 exit (1); 

} 



CS 241 Copyright ©: University of Illinois CS 241 Staff 39 

Functions: accept 

int accept (int sockfd, struct sockaddr* cliaddr, 

int* addrlen); 

 Block waiting for a new connection  

 Returns file descriptor or -1 and sets errno on failure 

 sockfd: socket file descriptor (returned from socket) 

 cliaddr: IP address and port number of client (returned from 
call) 

 addrlen: length of address structure = pointer to int set to 
sizeof (struct sockaddr_in) 

 

 addrlen is a value-result argument  

 the caller passes the size of the address structure, the kernel 
returns the size of the client’s address (the number of bytes 
written) 



CS 241 Copyright ©: University of Illinois CS 241 Staff 40 

Example: accept 

sin_size = sizeof(struct sockaddr_in); 

if ((new_fd = accept(sockfd, (struct sockaddr*) 

      &their_addr, &sin_size)) == -1) { 

 perror("accept"); 

 continue; 

} 

 

 How does the server know which client it is? 

 their_addr.sin_addr contains the client’s IP address 

 their_addr.port contains the client’s port number 
 

  printf("server: got connection from %s\n",  

              inet_ntoa(their_addr.sin_addr)); 

 

 

    

 



Functions: accept 

 Notes 

 After accept() returns a new socket 

descriptor, I/O can be done using read() and 

write() 

 Why does accept() need to return a new 

descriptor? 

CS 241 Copyright ©: University of Illinois CS 241 Staff 41 



CS 241 Copyright ©: University of Illinois CS 241 Staff 42 

Sending and Receiving Data 

int send(int sockfd, const void * buf, 

size_t nbytes, int flags);  

 Write data to a stream (TCP) or “connected” 
datagram (UDP) socket.  
 Returns number of bytes written or -1. 

 

int recv(int sockfd, void *buf, size_t 

nbytes, int flags);  

 Read data from a stream (TCP) or “connected” 
datagram (UDP) socket.  
 Returns number of bytes read or -1. 



CS 241 Copyright ©: University of Illinois CS 241 Staff 43 

Functions: send 

int send(int sockfd, const void * buf, size_t 

nbytes, int flags);  

 Send data un a stream (TCP) or “connected” 
datagram (UDP) socket 
 Returns number of bytes written or -1 and sets errno on 

failure 

 sockfd: socket file descriptor (returned from socket) 

 buf: data buffer 

 nbytes: number of bytes to try to write 

 flags: control flags 
 MSG_PEEK: get data from the beginning of the receive queue without 

removing that data from the queue 

 



CS 241 Copyright ©: University of Illinois CS 241 Staff 44 

Functions: send 

int send(int sockfd, const void * buf, size_t 

nbytes, int flags);  

 Example 
len = strlen(msg);  

bytes_sent = send(sockfd, msg, len, 0); 

 



CS 241 Copyright ©: University of Illinois CS 241 Staff 45 

Functions: recv 

int recv(int sockfd, void *buf, size_t nbytes, 

int flags);  

 Read data from a stream (TCP) or “connected” 

datagram (UDP) socket 

 Returns number of bytes read or -1, sets errno on failure 

 Returns 0 if socket closed 

 sockfd: socket file descriptor (returned from socket) 

 buf: data buffer 

 nbytes: number of bytes to try to read 

 flags: see man page for details; typically use 0 



CS 241 Copyright ©: University of Illinois CS 241 Staff 46 

Functions: recv 

int recv(int sockfd, char* buf, size_t nbytes); 

 Notes 

 read blocks waiting for data from the client but does not 

guarantee that sizeof(buf) is read 

 Example 
if((r = read(newfd, buf, sizeof(buf))) < 0) { 

   perror(“read”); exit(1); 

} 

 



Sending and Receiving Data 

 Datagram sockets aren't connected to a 

remote host 

 What piece of information do we need to give 

before we send a packet?  

 The destination/source address! 

CS 241 Copyright ©: University of Illinois CS 241 Staff 47 



CS 241 Copyright ©: University of Illinois CS 241 Staff 48 

Sending and Receiving Data 

int sendto (int sockfd, char* buf, 

size_t nbytes, int flags, struct 

sockaddr* destaddr, int addrlen); 

 Send a datagram to another UDP socket.  
 Returns number of bytes written or -1. 

 

int recvfrom (int sockfd, char* buf, 

size_t nbytes, int flags, struct 

sockaddr* srcaddr, int* addrlen); 

 Read a datagram from a UDP socket.  
 Returns number of bytes read or -1. 



CS 241 Copyright ©: University of Illinois CS 241 Staff 49 

Functions: sendto 

int sendto (int sockfd, char* buf, size_t nbytes, 

int flags, struct sockaddr* destaddr, int 

addrlen); 

 Send a datagram to another UDP socket 

 Returns number of bytes written or -1 and sets errno on failure 

 sockfd: socket file descriptor (returned from socket) 

 buf: data buffer 

 nbytes: number of bytes to try to read 

 flags: see man page for details; typically use 0 

 destaddr: IP address and port number of destination socket 

 addrlen: length of address structure  

 = sizeof (struct sockaddr_in) 



CS 241 Copyright ©: University of Illinois CS 241 Staff 50 

Functions: sendto 

int sendto (int sockfd, char* buf, size_t nbytes, 

int flags, struct sockaddr* destaddr, int 

addrlen); 

 Example 
n = sendto(sock, buf, sizeof(buf), 0,(struct 

sockaddr *) &from,fromlen);  

if (n < 0)  

 perror("sendto");  

 exit(1); 

}  



CS 241 Copyright ©: University of Illinois CS 241 Staff 51 

Functions: recvfrom 

int recvfrom (int sockfd, char* buf, size_t 
nbytes, int flags, struct sockaddr* srcaddr, 
int* addrlen); 

 Read a datagram from a UDP socket.  
 Returns number of bytes read (0 is valid) or -1 and sets errno 

on failure 

 sockfd: socket file descriptor (returned from socket) 

 buf: data buffer 

 nbytes: number of bytes to try to read 

 flags: see man page for details; typically use 0 

 srcaddr: IP address and port number of sending socket 
(returned from call) 

 addrlen: length of address structure = pointer to int set to 
sizeof (struct sockaddr_in) 



CS 241 Copyright ©: University of Illinois CS 241 Staff 52 

Functions: recvfrom 

int recvfrom (int sockfd, char* buf, size_t 
nbytes, int flags, struct sockaddr* srcaddr, 
int* addrlen); 

 Example 
n = recvfrom(sock, buf, 1024, 0, (struct sockaddr 

*)&from,&fromlen); 

if (n < 0) { 

 perror("recvfrom"); 

 exit(1); 

} 



CS 241 Copyright ©: University of Illinois CS 241 Staff 53 

Tearing Down a Connection 

int close (int sockfd); 

 Close a socket.  

 Returns 0 on success, -1 and sets errno on failure. 

 

int shutdown (int sockfd, int howto); 

 Force termination of communication across a socket in 

one or both directions.  

 Returns 0 on success, -1 and sets errno on failure. 



CS 241 Copyright ©: University of Illinois CS 241 Staff 54 

Functions: close 

int close (int sockfd); 

 Close a socket 

 Returns 0 on success, -1 and sets errno on failure 

 sockfd: socket file descriptor (returned from socket) 

 

 Closes communication on socket in both directions 

 All data sent before close are delivered to other side 

(although this aspect can be overridden) 

 After close, sockfd is not valid for reading or 

writing 



CS 241 Copyright ©: University of Illinois CS 241 Staff 55 

Functions: shutdown 

int shutdown (int sockfd, int howto); 

 Force termination of communication across a socket in one or 
both directions 

 Returns 0 on success, -1 and sets errno on failure 

 sockfd: socket file descriptor (returned from socket) 

 howto:  

 SHUT_RD to stop reading 

 SHUT_WR to stop writing 

 SHUT_RDWR to stop both 

 

 shutdown overrides the usual rules regarding duplicated 
sockets, in which TCP teardown does not occur until all copies 
have closed the socket 



Note on close vs. shutdown 

 close(): closes the socket but the connection is 

still open for processes that shares this socket  

 The connection stays opened both for read and write 

 shutdown(): breaks the connection for all 

processes sharing the socket 

 A read will detect EOF, and a write will receive SIGPIPE 

 shutdown() has a second argument how to close the 

connection:  

 0 means to disable further reading 

 1 to disable writing 

 2 disables both 

CS 241 Copyright ©: University of Illinois CS 241 Staff 56 


