
Copyright © University of Illinois CS 241 Staff 1

Introduction to Networking

and the Internet

Where are we?

 Function calls, system calls, threads and

processes

Copyright © University of Illinois CS 241 Staff 2

What’s next?

 Networked communication and distributed

applications

Copyright © University of Illinois CS 241 Staff 3

Introduction

 What is the Internet?

 Network edge

 What is a protocol?

 Protocol layers, service models

Copyright © University of Illinois CS 241 Staff 4

What is the Internet?

 Communication

infrastructure

 Enables distributed

applications

 Web, VoIP, email, games,

e-commerce, file sharing

 Communication services

 Provided to applications

 Reliable data delivery from

source to destination

 “best effort” (unreliable)

data delivery

Copyright © University of Illinois CS 241 Staff 5

Home network

Institutional network

Mobile network

Global ISP

Regional ISP

Network Service

 Goal

 Transfer data between end

systems

 Support For Common

Services

 Simplify the role of applications

 Hide the complexity of the

network

 Semantics and interface depend

on applications

Copyright © University of Illinois CS 241 Staff 6

Example: Sending a Letter

Copyright © University of Illinois CS 241 Staff

Bob

Postman

Logical flow of information

Bob’s

mailbox

Alice

Alice’s

mailbox

7

Services

 Unconfirmed service

 Acknowledged service

Copyright © University of Illinois CS 241 Staff 8

US Mail

Request

Indicate

Indicate

Confirm

US Mail

Request

Indicate

Copyright © University of Illinois CS 241 Staff 9

Host

Host Host

Host Host

Channel

Channels

 Channel

 The abstraction for application-level communication

 Idea

 Turn host-to-host connectivity into process-to-process

communication

Proc

Proc

Looks like IPC!

Networked Communication

Challenges

 Networked communication  IPC

 Problems typically masked by communication channel

abstractions

 Bit errors (electrical interference)

 Packet errors (congestion)

 Link/node failures

 Message delays

 Out-of-order delivery

 Eavesdropping

 Goal

 Fill the gap between what applications expect and what the

underlying technology provides

Copyright © University of Illinois CS 241 Staff 10

Network Architecture

 Networks are
complex!

 Many “pieces”
 Hosts

 Routers

 Links of various
media

 Applications

 Protocols

 Hardware, software

 Question

 Is there any hope

of organizing

structure of

network?

Copyright © University of Illinois CS 241 Staff 11

Copyright © University of Illinois CS 241 Staff 12

Abstraction through Layering

 Abstract system into layers:

 Decompose the problem of building a network into manageable

components

 Each layer provides some functionality

 Modular design provides flexibility

 Modify layer independently

 Allows alternative abstractions

Application programs

Hardware

Host-to-host connectivity

Acknowledged service Unconfirmed service

Layering Example: Air Travel

 Layers

 Each layer implements a service

 Via its own internal-layer actions

 Relying on services provided by layer below

Copyright © University of Illinois CS 241 Staff 13

Why layering?

 Complexity

 Explicit structure allows identification, relationship of

complex system’s pieces

 Modularity

 Eases maintenance, updating of system

 Change of implementation of layer’s service transparent to

rest of system

 e.g., change in gate procedure doesn’t affect rest of system

Copyright © University of Illinois CS 241 Staff 14

Protocol: Language of

communication across hosts

 Defines structure of

communication

between two instances

of a layer (on two

hosts)

 Protocols are defined

by

 Specific msgs sent

 Specific actions

taken when msgs

received, or other

events

 Protocols define

 Format

 Order of msgs sent

and received

among network

entities

 Actions taken on

msg transmission,

receipt

Copyright © University of Illinois CS 241 Staff 15

What is a Protocol?

 Human protocols

 “what’s the time?”

 “I have a question”

 Introductions

 Network protocols

 Machines rather than humans

 All internet communication is

governed by protocols

Copyright © University of Illinois CS 241 Staff 16

Hi

Hi

Got the

time?

2:00

TCP connection

 request

TCP connection

response

Get http://www.uiuc.edu

<file> time

Copyright © University of Illinois CS 241 Staff 17

Layering Concepts

 Encapsulation
 Higher layer protocols create messages and

send them via the lower layer protocols

 These messages are treated as data by the
lower-level protocol

 Higher-layer protocol adds its own control
information in the form of headers or trailers

 Multiplexing and Demultiplexing
 Use protocol keys in the header to determine

correct upper-layer protocol

Copyright © University of Illinois CS 241 Staff 18

Internet Protocol Stack

Application

Physical

Transport

Data Link

Network

 Application: Application specific protocols

 Transport: Process-to-process channel

 Network: Host-to-host packet delivery

 Data Link: Framing of data bits

 Physical: Transmission of raw bits

Copyright © University of Illinois CS 241 Staff 19

Network Packet

Data Link Header Data Link Body (eg: 802.11g)

IP Header IP Body (Network Layer)

TCP Header TCP Body (Transport)

Application Packet

Copyright © University of Illinois CS 241 Staff 20

Copyright © University of Illinois CS 241 Staff 21

TCP Handshake

HTTP Protocol
TCP Shutdown

HTTP Packet Contents

HTTP Packet

TCP Header

IP Header

MAC/802.3, Ethernet II Header

Transport Layer

 Provide logical communication
between application processes
running on different hosts

 Transport protocols run in end
systems

 Send side
 Break application messages into segments

 Pass to network layer

 Receive side
 Reassemble segments into messages

 Pass to application layer

 More than one transport protocol
available to applications

 Internet: TCP and UDP

Copyright © University of Illinois CS 241 Staff 22

application

transport

network

data link

physical

application

transport

network

data link

physical

Transport vs. Network Layer

 Transport layer

 Logical

communication

between

processes

 Relies on,

enhances,

network layer

services

 Network layer

 Logical

communication

between hosts

Copyright © University of Illinois CS 241 Staff 23

Bob

Postman

Logical flow of information

Bob’s

mailbox

Alice

Alice’s

mailbox

Internet Architecture –

Hourglass Design

 Features

 Hourglass shape – IP is the focal point

Copyright © University of Illinois CS 241 Staff 24

FTP

TCP

Modem MPLS 3G wireless Ethernet

IP

UDP

TFTP NV HTTP

Copyright © University of Illinois CS 241 Staff 25

Network Applications

Creating a Network

Application

 Write programs that

 Run on (different) end systems

 Communicate over network

 e.g., web server software communicates with browser

software

 No need to write software for network-core

devices

 Network-core devices do not run user

applications

Copyright © University of Illinois CS 241 Staff 26

Client-server Architecture

 Server

 Always-on host

 Well-known IP address

 Clients

 Communicate with server

 May be intermittently

connected

 May have dynamic IP

addresses

 Do not communicate

directly with each other

Copyright © University of Illinois CS 241 Staff 27

client/server

P2P Architecture

 No always-on server

 Arbitrary end systems

directly communicate

 Peers are intermittently

connected and change

IP addresses

 Highly scalable but

difficult to manage

Copyright © University of Illinois CS 241 Staff 28

peer-peer

Hybrid Client-server and P2P

 Skype

 Voice-over-IP P2P application

 Centralized server: finding address of remote party

 Client-client connection: direct (not through server)

 Instant messaging

 Chatting between two users is P2P

 Centralized service: client presence detection/location

 User registers its IP address with central server when it

comes online

 User contacts central server to find IP addresses of

buddies

Copyright © University of Illinois CS 241 Staff 29

Addressing Processes

 Receiving messages
 Process must have

identifier

 Host device has unique
32-bit IP address

 Question
 Does the IP address of

host suffice for
identifying the process?

 Answer: No, many
processes can be
running on same host

 Process Identifier
 Include both IP address

and port number
associated with
process on host

 Example port numbers
 HTTP server: 80

 Mail server: 25

Copyright © University of Illinois CS 241 Staff 31

Sockets

 Process sends/receives

messages to/from its

socket

 Analogous to a door

 Sending process shoves

messages out the door

 Transport infrastructure

on other side of door

brings message to

socket at receiving

process

Copyright © University of Illinois CS 241 Staff 32

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

Sockets

 API

 Choice of transport

protocol

 Ability to set a few

parameters

Copyright © University of Illinois CS 241 Staff 33

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

Transport Services

 Data loss
 Some applications

(e.g., audio) can
tolerate some loss

 Other apps (e.g., file
transfer, telnet) require
100% reliability

 Timing
 Some applications

(e.g., IP phones,
interactive games)
require low delay to be
“effective”

 Throughput
 Some applications

(e.g., multimedia) have
a minimum throughput
to be “effective”

 other applications
(“elastic apps”) make
use of whatever
throughput they get

 Security
 Encryption, data

integrity, …

Copyright © University of Illinois CS 241 Staff 34

Internet Transport Protocols

TCP
 Connection-oriented

 setup required between
client and server

 Reliable transport

 Flow control

 Won’t overwhelm receiver

 Congestion control

 Won’t overwhelm network

 Does not provide

 Timing, throughput
guarantees, security

UDP

 Unreliable data transfer

 Does not provide

 Connection setup,

reliability, flow control,

congestion control, timing,

throughput guarantee, or

security

 Question

 Why bother? Why is

there a UDP?

Copyright © University of Illinois CS 241 Staff 35

