
Synchronization

CS 241

int X = 0; /**< Global variable used for counting. */

/**

 * Increments global variable X by 1 a total of TOTAL times.

 */

void* count_up(void *ptr)

{

 int i = 0;

 for (i=0; i < TOTAL; i++)

 X++;

 return NULL;

}

void main()

{

 pthread_t tid[2]; int i;

 for (i=0; i<2; i++) {

 pthread_create(&tid[i], NULL, count_up, NULL); }

 for (i=0; i<2; i++) {

 pthread_join(tid[i], NULL); }

 printf("%d\n", X);

}

Assembly Code

Critical Section

• A critical section is a piece of code that
accesses a shared resource (data structure or
device) that must not be concurrently
accessed by more than one thread of
execution.

Assembly Code

• One possible ordering…

Assembly Code

• A second possible ordering…

int X = 0; /**< Global variable used for counting. */

/**

 * Increments global variable X by 1 a total of TOTAL times.

 */

void* count_up(void *ptr)

{

 int i = 0;

 for (i=0; i < TOTAL; i++)

 { atomic { X++; } }

 /* atomic doesn’t exist, how do we simulate it? */

 return NULL;

}

void main()

{

 pthread_t tid[2]; int i;

 for (i=0; i<2; i++) {

 pthread_create(&tid[i], NULL, count_up, NULL); }

 for (i=0; i<2; i++) {

 pthread_join(tid[i], NULL); }

 printf("%d\n", X);

}

Mutex

• The pthread library provides us with a mutex,
a variable that is “locked” or ”unlocked”.

• Key operation: pthread_mutex_lock()

– When locked: wait until the variable is unlocked
before locking and continuing.

– When unlocked: lock the variable and continue.

• Also: pthread_mutex_unlock()

int X = 0; /**< Global variable used for counting. */

pthread_mutex_t mutex;

/**

 * Increments global variable X by 1 a total of TOTAL times.

 */

void* count_up(void *ptr)

{

 int i = 0;

 for (i=0; i < TOTAL; i++) {

 pthread_mutex_lock(&mutex);

 X++;

 pthread_mutex_unlock(&mutex);

 }

 return NULL;

}

void main()

{

 pthread_mutex_init(&mutex, NULL);

 ...

 pthread_mutex_destroy(&mutex);

}

In Hardware…

• Every system has a different way of
implementing the atomic nature of
pthread_mutex_lock().

/**

 * A C-code representation of an atomic hardware instruction.

 *

 * If the value contained in lock is UNLOCKED (0), we LOCK (1) it

 * and return SUCCESS (0). If the value was LOCKED (1), we

 * return FAILURE (1).

 *

 * In x86, this is done via an XCHG or LOCK optcodes.

 */

int testandset(int *lock)

{

 if (*lock == 0) /* If our lock is unlocked... */

 {

 lock = 1; / ...lock it, */

 return 0; /* ...and return that we locked it. */

 }

 else

 return 1; /* Otherwise, we can’t lock it. */

}

• Fundamentally, we abstract it into a function
that tests and sets a lock variable:

Two Terms in Synchronization

• Mutual Exclusion: At most, only one thread is
accessing the critical section at any time.

• Progress: If a thread wants to enter the critical
section and no other thread is in the critical
section, it must have access to the critical
section.

Violations in Synchronization

• Violation of Mutual Exclusion: At any time,
two or more threads have access to the critical
section.

• Violation of Progress: A thread is indefiniately
blocked from entering the critical section
when no other thread is executing the critical
section.

Synchronization Examples

• In each example:

– Assume x, x1, and x2 are initially set to 0.

– Each thread may run any number of times, in any
order.

– One thread may finish before the other thread
(eg: the system may only have one of the two
threads executing after a period of time).

Thread 1:

while (x > 0) { }

x++;

/* critical section */

x--;

Thread 2:

while (x > 0) { }

x++;

/* critical section */

x--;

Mutual Exclusion? Progress?

Example #1

Thread 1:

while (x1 != 0) { }

x2 = 1;

/* critical section */

x2 = 0;

Thread 2:

while (x2 != 0) { }

x1 = 1;

/* critical section */

x1 = 0;

Mutual Exclusion? Progress?

Example #2

Thread 1:

x2 = 1;

while (x1 != 0) { }

/* critical section */

x2 = 0;

Thread 2:

x1 = 1;

while (x2 != 0) { }

/* critical section */

x1 = 0;

Mutual Exclusion? Progress?

Example #3

Thread 1:

if (x % 2 == 1)

{

 /* critical section */

 x = 2;

}

Thread 2:

if (x % 2 == 0)

{

 /* critical section */

 x = 1;

}

Mutual Exclusion? Progress?

Example #4

Thread 1:

while (x == 1) {}

x = 1;

/* critical section */

Thread 2:

while (x == 1) {}

x = 1;

/* critical section */

Mutual Exclusion? Progress?

Example #5

Thread 1:

while (testandset(&x)) { }

/* critical section */

x = 0;

Thread 2:

while (testandset(&x)) { }

/* critical section */

x = 0;

Mutual Exclusion? Progress?

Example #6

Thread 1:

while (pthread_mutex_lock(&m))

 { }

/* critical section */

pthread_mutex_unlock(&m);

Thread 2:

while (pthread_mutex_lock(&m))

 { }

/* critical section */

pthread_mutex_unlock(&m);

Mutual Exclusion? Progress?

Example #7

Mutexes are limited…

• How do we allow two threads to enter a code
region (as opposed to 1)?

• How do we allow the same thread to enter a
code region multiple times (but not any other
threads)?
– Equivalent to the synchronized keyword in Java.

• How do we allow any general condition?

Conditional Variables

• Idea:

– Any number of threads can _wait() for a
condition.

– When the condition has changed, the thread
changing the condition _signal()s one thread or
_broadcast()s to all the threads.

– The condition itself is contained a critical section,
allowing only one thread to access it.

pthread_cond_wait()

• In pthread_cond_wait():

– Takes two arguments:

• pthread_cond_t: The conditional variable.

• pthread_mutex_t: The mutex for the critical section.

– When pthread_cond_wait() is called:

• Unlocks the mutex, (so the mutex must be locked)

• Waits for a signal, (via _signal() or _broadcast())

• Locks the mutex before running again

Conditional Variables

• Scenario #1:

– Block all threads until at least four threads arrive.
Upon the fourth thread, allow all threads (blocked
and future) to continue.

pthread_mutex_t mutex; /* _mutex_init() called elsewhere */

pthread_cond_t cond; /* _cond_init() called elsewhere */

int threads_seen = 0;

void roadblock_four()

{

 pthread_mutex_lock(&mutex);

 threads_seen++;

 pthread_cond_broadcast(&cond);

 while (threads_seen < 4)

 pthread_cond_wait(&cond, &mutex);

 pthread_mutex_unlock(&mutex);

}

Conditional Variables

• Scenario #2:

– Create a blocking queue data structure.

– Any operation to _dequeue() should block until
data is available.

typedef struct _blockingqueue_t

{

 queue_t *q; /* Standard queue. */

 pthread_mutex_t mutex;

 pthread_cond_t cond;

} blockingqueue_t;

void *blockingqueue_dequeue(blockingqueue_t *q)

{

 pthread_mutex_lock(&(q->mutex));

 while (queue_size(q->q) == 0)

 pthread_cond_wait(&(q->cond), &(q->mutex));

 void *ret = queue_dequeue(q->q);

 pthread_mutex_unlock(&(q->mutex));

 return ret;

}

void blockingqueue_enqueue(blockingqueue_t *q, void *item)

{

 pthread_mutex_lock(&(q->mutex));

 queue_enqueue(q->q, item);

 pthread_cond_signal(&(q->cond));

 pthread_mutex_unlock(&(q->mutex));

}

