
Scheduling

CS 241

Motivation

• Desktop Machine: 50-100 processes

– Each having 5-50 threads

– Total: 250-5000 total threads

• Server Machine: 1000+ processes

– Each having 5-100 threads

– Easily over 100,000 total threads!

Meta-Scheduling Strategies

• Time Slicing: Give each thread the same time
unit, always.

• Cooperative Multi-tasking: Ask each thread to
yield().

• Multi-programming: Evaluate resource usage
on each system call, possibly swap out.

Scheduling Strategy

• …but who goes first?

• …and who goes next?

FCFS

• First Come First Serve (FCFS): First job to
arrive, first to run.

Job ID Arrival Time Running Time Priority

1 0 7 2

2 2 4 3

3 5 11 1 (Important)

4 6 2 4

• First Come First Serve (FCFS): First job to
arrive, first to run.

Job ID Arrival Time Running Time Priority

1 0 7 2

2 2 4 3

3 5 11 1 (Important)

4 6 2 4

Time 5 0 10 15 20 25

(Non)Preemptive

• Algorithms are broadly classified as
preemptive or non-preemptive.

– Preemptive: May swap a job once it has started
running.

– Non-Preemptive: Can NOT swap a job once a job
has started running.

• FCFS: Non-Preemptive.

SJF / PSJF

• Shortest Job First (SJF): Run the job with the
smallest running time, non-preemptively.

• Preemptive SJF (PSJF): Always run the job with
the shortest remaining time, even if this
preempts a currently running job.

– Also known as Shortest Remaining Time (SRT)

• Shortest Job First (SJF)

Job ID Arrival Time Running Time Priority

1 0 7 2

2 2 4 3

3 5 11 1 (Important)

4 6 2 4

Time 5 0 10 15 20 25

• Preemptive Shortest Job First (PSJF)

Job ID Arrival Time Running Time Priority

1 0 7 2

2 2 4 3

3 5 11 1 (Important)

4 6 2 4

Time 5 0 10 15 20 25

PRI / PPRI

• Priority (PRI): Run the most important job
first, non-preemptively.

• Preemptive Priority (PPRI): Always run the
most important job available, even if this
preempts a currently running job.

• Priority (PRI)

Job ID Arrival Time Running Time Priority

1 0 7 2

2 2 4 3

3 5 11 1 (Important)

4 6 2 4

Time 5 0 10 15 20 25

• Preemptive Priority (PPRI)

Job ID Arrival Time Running Time Priority

1 0 7 2

2 2 4 3

3 5 11 1 (Important)

4 6 2 4

Time 5 0 10 15 20 25

Round Robin (RR)

• Round Robin (RR): Run each job for a given
time quantum.

– Use a queue to order jobs.

– A time quantum must be specified.

• RR2 := Time quantum of two (2) time units.

• Round Robin, q=3 (RR3)

Job ID Arrival Time Running Time Priority

1 0 7 2

2 2 4 3

3 5 11 1 (Important)

4 6 2 4

Time 5 0 10 15 20 25

Round Robin (RR)

• RR may act differently depending on the
quantum or job size.

– Very small quantum:

– Very large quantum:

– Equal sized jobs:

Algorithm Properties

• Starvation: Will every job get scheduled in a
fixed amount of time?

– An algorithm may cause starvation if there exists
any scenario where a specific job may never have
a chance to run.

FCFS: PRI:

PPRI:

SJF:

PSJF: RR:

Algorithm Properties

• Waiting Time: The amount of time the job
spending waiting in the scheduling queue.

• Response Time: The amount of time between
the arrival of the job and the first time run.

• Turnaround Time: The total amount of time
the job was in the system (waiting + running).

Algorithm Properties

• Fastest Average Response Time?

• Fastest Average Waiting Time?

• Fastest Average Turnaround Time?

Algorithm Properties

• Overhead: How much work does it add to use
a given scheduling algorithm?

– Algorithm Complexity

– Context Switches

• Algorithm with the highest average overhead?

Scheduling Example
/**

 * Print out a identification string forever.

 *

 * @param ptr

 * Set by main() as a pointer to an (int *) containing

 * an 0-based ID of the thread.

 */

void * printer_thread(void *ptr)

{

 /* Create the message we will print out */

 int index = *((int *)ptr);

 char *s = asprintf("thread %d\n", index);

 /* Print the string forever. */

 while (1)

 printf("%s", s);

 free(s); return NULL;

}

Output
thread 1

thread 1

thread 0

thread 0

thread 0

thread 0

thread 0

thread 0

thread 1

thread 1

thread 1

thread 1

thread 1

thread 1

thread 0

thread 0

thread 1

thread 1

…

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

…

Results

Results

int X = 0; /**< Global variable used for counting. */

/**

 * Increments global variable X by 1 a total of TOTAL times.

 */

void* count_up(void *ptr)

{

 int i = 0;

 for (i=0; i < TOTAL; i++)

 X++;

 return NULL;

}

void main()

{

 pthread_t tid[2]; int i;

 for (i=0; i<2; i++) {

 pthread_create(&tid[i], NULL, count_up, NULL); }

 for (i=0; i<2; i++) {

 pthread_join(tid[i], NULL); }

 printf("%d\n", X);

}

