Scheduling

CS 241

Motivation

* Desktop Machine: 50-100 processes
— Each having 5-50 threads
— Total: 250-5000 total threads

e Server Machine: 1000+ processes
— Each having 5-100 threads
— Easily over 100,000 total threads!

Meta-Scheduling Strategies

* Time Slicing: Give each thread the same time
unit, always.

* Cooperative Multi-tasking: Ask each thread to
yield().

 Multi-programming: Evaluate resource usage
on each system call, possibly swap out.

Scheduling Strategy

e ..but who goes first?
e ..and who goes next?

FCFS

* First Come First Serve (FCFS): First job to
arrive, first to run.

LobiD_| Al Time | Runing Time | Pioity
0 7 2

1

2 2 4 3

3 5 11 1 (Important)
4 6 2 4

* First Come First Serve (FCFS): First job to
arrive, first to run.

LobiD_| Arvl Time | Runing Time | Prioity
0 7 2

1
2 2 4 3
3 5 11 1 (Important)
4 6 2 4
Time O 5 10 15 20 25

(Non)Preemptive

* Algorithms are broadly classified as
preemptive or non-preemptive.

— Preemptive: May swap a job once it has started
running.

— Non-Preemptive: Can NOT swap a job once a job
has started running.

* FCFS: Non-Preemptive.

SJF / PSJF

e Shortest Job First (SJF): Run the job with the
smallest running time, non-preemptively.

* Preemptive SJF (PSJF): Always run the job with
the shortest remaining time, even if this
preempts a currently running job.

— Also known as Shortest Remaining Time (SRT)

* Shortest Job First (SJF)
LobiD | Arival Time | Running T | Priorty
0 7 2

1
2 2 4 3
3 5 11 1 (Important)
4 6 2 4
Time O 5 10 15 20 25

* Preemptive Shortest Job First (PSJF)
LobiD | Arival Time | Running T | Priorty
0 7 2

1
2 2 4 3
3 5 11 1 (Important)
4 6 2 4
Time O 5 10 15 20 25

PRI / PPRI

* Priority (PRI): Run the most important job
first, non-preemptively.

* Preemptive Priority (PPRI): Always run the
most important job available, even if this
preempts a currently running job.

* Priority (PRI)
LobiD | Arival Time | Running T | Priorty
0 7 2

1
2 2 4 3
3 5 11 1 (Important)
4 6 2 4
Time O 5 10 15 20 25

* Preemptive Priority (PPRI)
LobiD | Arival Time | Running T | Priorty
0 7 2

1
2 2 4 3
3 5 11 1 (Important)
4 6 2 4
Time O 5 10 15 20 25

Round Robin (RR)

* Round Robin (RR): Run each job for a given
time quantum.

— Use a queue to order jobs.

— A time quantum must be specified.
* RR2 :=Time quantum of two (2) time units.

 Round Robin, q=3 (RR3)
Job1D | ArtivalTime | Running Time | priorty
0 7 2

1
2 2 4 3
3 5 11 1 (Important)
4 6 2 4
Time O 5 10 15 20 25

Round Robin (RR)

* RR may act differently depending on the
guantum or job size.
— Very small quantum:

— Very large quantum:

— Equal sized jobs:

Algorithm Properties

e Starvation: Will every job get scheduled in a
fixed amount of time?
— An algorithm may cause starvation if there exists

any scenario where a specific job may never have
a chance to run.

FCFS: SJF: PRI:

RR: PSJF: PPRI:

Algorithm Properties

* Waiting Time: The amount of time the job
spending waiting in the scheduling queue.

 Response Time: The amount of time between
the arrival of the job and the first time run.

e Turnaround Time: The total amount of time
the job was in the system (waiting + running).

Algorithm Properties

* Fastest Average Response Time?

* Fastest Average Waiting Time?

* Fastest Average Turnaround Time?

Algorithm Properties

* Overhead: How much work does it add to use
a given scheduling algorithm?

— Algorithm Complexity
— Context Switches

e Algorithm with the highest average overhead?

Scheduling Example

/**

* Print out a identification string forever.
*

* @param ptr

* Set by main() as a pointer to an (int *) containing
* an O-based ID of the thread.
*/

void * printer thread(void *ptr)

{

/* Create the message we will print out */
int index = *((int *)ptr);
char *s = asprintf ("thread %d\n", index);

/* Print the string forever. */
while (1)

printf ("%$s", s);

free(s); return NULL;

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

HHROOKRKRRKRHHOOOOOORHR

Output

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

HORrROHMOKROOHMOKROHKHORORR

Measured probability

Results

5 10 15

Number of consecutive printf()s

20

Results

' 4 ~ MacOS X =

0.001
0.0001
| e-05
| e-06 5 : | | |
| e-08 | | | | |

Measured probability

I |0 100 1000 10000 10000C

Number of consecutive printf()s

int X = 0; /**< Global variable used for counting. */

/**

* Increments global variable X by 1 a total of TOTAL times.
*/
void* count up(void *ptr)
{
int 1 = 0;
for (i=0; i < TOTAL; i++)
X++;

return NULL;

void main ()
{
pthread t tid[2]; int i;
for (1=0; i<2; i++) {
pthread create(&tid[i], NULL, count up, NULL); }
for (i=0; i<2; i++) {
pthread join(tid[i], NULL); }

printf ("$d\n", X);

