
Threads

Threads

• Processes

– Created with fork()

– Expensive to create, manage, and context switch

• Threads

– “Light Weight Processes”

– Every process already has at least one!

• Threads are the “engine” inside a process.

Processes vs. Threads

• (a): Three processes, one thread /process

• (b): One process, three threads

Processes vs. Threads

• Processes are identified by a unique PID.

– Threads are identified by a Thread ID (TID).

– Each thread in a process has a unique TID, not PID.

• Processes each have their own address space.

– Each thread in a process shares the same address
space. (Everyone has access to the same global
variables – race condition!)

Processes vs. Threads

• Processes have separate file descriptors.

– Threads within a process share file descriptors.

• Processes are created with fork(), duplicating
the entire process.

– Threads are created with pthread_create(), which
starts the thread at the beginning of a function.

Threads are everywhere!

• Consider a variety of processes:

– Game: Diablo III, 1 process, 42 threads

– Browser: Firefox, 1 process, 36 threads

– Office: PowerPoint, 1 process, 8 threads

– SSH: PuTTY, 1 process, 4 threads

What are threads used for?

Q: What if this is all done by one thread?

What are threads used for?

Copyright ©: University of Illinois CS 241 Staff

What would
happen if
this were

single-
threaded?

Things commonly done in separate
threads…

• GUI

– If a blocking operation occurs on the GUI threads,
the GUI becomes unresponsive to user input.

• Networking I/O

• Disk I/O

– Long, blocking operations

Threads for computation…

• Each thread may run on a separate CPU.

– Allows for multiple CPUs (“cores”) to work
together to accomplish a task.

– Allows for a single server to handle multiple
simultaneous requests.

– Speedup: The factor that a process speeds up
when running on multiple cores.

Speedup

• Mathematically defined:

– SP: Speed-up given P processors.

– T1: Time a given process takes to run on 1
processor.

– TP: Time a given process takes to run on P
processors.

• Ideal Speedup: SP = P

Speedup

15s

30s

1 2 3 4 5 6 7 8 9 10

Time

Number of Threads

Speedup

15s

30s

1 2 3 4 5 6 7 8 9 10

Time

Number of Threads

Speedup

15s

30s

1 2 3 4 5 6 7 8 9 10

Time

Number of Threads

Speedup

15s

30s

1 2 3 4 5 6 7 8 9 10

Time

Number of Threads

Real Results!

Real Results!

Using Threads

Using Threads

• Making a traditional function call:

processfd();

processfd() {

}

Calling program

Called function

Thread of execution

Using Threads

• Launching a thread:

pthread_create();

processfd() {

}

processfd();

processfd() {

}

Calling program
Called function

Thread creation

Thread of execution

Using Threads

• Just like normal function calls, each function
gets its own stack frame!

– 100 threads launch function foo(): 100 stack
frames

Using Threads

Per Process Items Per Thread Items

Address space
Global variables
Open files
Child processes
Pending alarms
Signals and signal handlers
Accounting information

Program counter
Registers
Stack
State

Using Threads

Platform

fork() pthread_create()

real user sys real user sys

AMD 2.3 GHz Opteron (16 cpus) 12.5 1.0 12.5 1.2 0.2 1.3

AMD 2.4 GHz Opteron (8 cpus) 17.6 2.2 15.7 1.4 0.3 1.3

IBM 4.0 GHz POWER6 (8 cpus) 9.5 0.6 8.8 1.6 0.1 0.4

IBM 1.9 GHz POWER5 p5-575 (8 cpus) 64.2 30.7 27.6 1.7 0.6 1.1

IBM 1.5 GHz POWER4 (8 cpus) 104.5 48.6 47.2 2.1 1.0 1.5

INTEL 2.4 GHz Xeon (2 cpus) 54.9 1.5 20.8 1.6 0.7 0.9

INTEL 1.4 GHz Itanium2 (4 cpus) 54.5 1.1 22.2 2.0 1.2 0.6

http://www.llnl.gov/computing/tutorials/pthreads.
Timings reflect 50,000 process/thread
Creations, were performed with the time utility, and units are in seconds, no optimization flags.

Creating a Thread

int pthread_create (pthread_t* tid, pthread_attr_t*

attr, void*(child_main), void* arg);

• Spawn a new posix thread

• Parameters:
– tid:

• Unique thread identifier returned from call

– attr:
• Use NULL [for default values]

Copyright ©: University of Illinois CS 241
Staff

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *snow(void *data)

{

 printf("Let it snow ... %s\n", data);

 return NULL;

}

int main(int argc, char *argv[])

{

 pthread_t mythread;

 int result;

 char *data = "Let it snow.";

 result = pthread_create(&mythread, NULL, snow, data);

 printf("pthread_create() returned %d\n", result);

 return 0;

}

Example #1

Three ways to exit a process…

• A call to exit()

• The “main” function returns a value

• All threads complete executing

Waiting for Threads:
pthread_join()

int pthread_join(pthread_t thread, void** retval);

• Suspend calling thread until target thread terminates

• Returns

– 0 on success

– Error code on failure

• Parameters
– thread:

• Target thread identifier

– retval:
• The value passed to pthread_exit() by the terminating thread is made

available in the location referenced by retval

Copyright ©: University of Illinois CS 241
Staff

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *snow(void *data)

{

 printf("Let it snow ... %s\n", data);

 return NULL;

}

int main(int argc, char *argv[])

{

 pthread_t mythread;

 int result;

 char *data = "Let it snow.";

 result = pthread_create(&mythread, NULL, snow, data);

 printf("pthread_create() returned %d\n", result);

 pthread_join(mythread, NULL);

 return 0;

}

Example #2

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *snow(void *data)

{

 int snow = 4;

 printf("Let it snow ... %s\n", data);

 return &snow;

}

int main(int argc, char *argv[])

{

 pthread_t mythread;

 int result;

 char *data = "Let it snow.";

 result = pthread_create(&mythread, NULL, snow, data);

 printf("pthread_create() returned %d\n", result);

 void *ret;

 pthread_join(mythread, &ret);

 printf("return value: %d\n", *((int *)ret));

 return 0;

}

Example #3

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *snow(void *data)

{

 printf("Let it snow ... %s\n", data);

 return &snow;

}

int main(int argc, char *argv[])

{

 pthread_t mythread;

 int result;

 char *data = "Let it snow.";

 result = pthread_create(&mythread, NULL, snow, data);

 printf("pthread_create() returned %d\n", result);

 void *ret;

 pthread_join(mythread, &ret);

 printf("return value: %d\n", *((int *)ret));

 return 0;

}

Example #4

Threads vs. Processes

 Property Processes created with fork Threads of a process
Ordinary function
calls

variables Get copies of all variables Share global variables Share global variables

IDs Get new process IDs
Share the same process
ID but have unique
thread ID

Share the same
process ID (and
thread ID)

Data/control
Must communicate explicitly,
e.g., use pipes or small integer
return value

May communicate with
return value or
carefully shared
variables

May communicate
with return value
or shared variables

Parallelism
(one CPU)

Concurrent Concurrent Sequential

Parallelism
(multiple
CPUs)

May be executed
simultaneously

Kernel threads may be
executed
simultaneously

Sequential

A few other calls…

• pthread_exit(): Exits the current thread.

• pthread_self(): Returns the TID of the current
thread.

• pthread_detatch(): Frees thread-related
memory without needing to _join().

– Use either _detatch() or _join(), not both!

Orphans and Zombies

Orphan

• Often used in relation to a process, an
orphaned processes is one where the parent
has terminated by the child continues.

– Re-parented by the init process.

– Will have the PPID of 1.

Zombie

• A zombie process or zombie thread is a
thread who has terminated but needs to
return state information back to its parent.

– Done via wait() and waitpid() for processes.

– Done via pthread_join() for threads

