Processes

CS 241

Announcements

* About 1/4th Done!

— 2/8 MPs are complete
— 2/8 weeks of lecture are complete

* Wade’s Office Hours Moved
— Mondays, 1pm-2pm (after class)

* MP3

fork()

* You already know about fork()...

— fork(): Create a new process. The child process is
nearly an exact copy of the parent process.

— Parent: Returns PID of the child (value >0)

— Child: Returns O.
e Can get PPID by calling getppid().

fork() Example

void main ()
{
int k = 3;
pid t pid = fork();
if (pid==0) { k += 1; }
else { k += 2; }
printf ("%$d\n", k);

fork() Example #2

void main () Parent ID: 100
{ Child ID: 200

int k = 3;

pid t pid = fork();

if (pid == 0) { k += 5; }

k += 10;

printf ("%d: %d\n", getpid(), k);

wait()

* You already know about wait()...

— wait(): Wait for a child process to terminate.

* Another variant, waitpid()...

— waitpid(): Waits for a specific child process to
terminate.

fork()+wait() Example

void main ()

{
int k = 3;
pid t pid = fork();
if (pid==0) { k +=1; }
else { k += 2; wait(); }
printf ("$d\n", k);

fork()+wait() Example #2

void main ()
{
int k = 3;
pid t pid = fork();
if (pid > 0) {
pid = fork();
k += 10;
if (pid > 0) { k += 20; wait(); }
}
printf ("%d\n", k);
}

fork()+wait() Example

void main ()
{
int k = 3;
pid t pid = fork();
if (pid == 0) {
pid = fork()
wait () ;
k += 10;
}
printf ("%$d\n", k);

exec()

e exec(): Execute a file

— The exec() family of functions replaces the
current process image with a new process image.

— The exec() function call never returns if successful.

— exec() broadly refers to a set of six functions that
do the same with different parameters.

fork()+exec()+wait()

void run(char *command line)
{
pid t pid = fork();
if (pid == 0) { /* Child */
exec (command line);
perror ("Failed to exec()");

exit(l);

} else if (pid > 0) { /* Parent */
waitpid (pid) ;

} else { /* fork() Error */

perror ("Failed to fork()");
}

Launch a new process...

* The fork()+exec()+wait() sequence is so
common there is a library call to do it for you!

— system(): executes a shell command

— Use this on MP3!

How does this work in memory?

* A process footprint is quite large...

— A small process is easily several MB in RAM.

Step 1: Before Fork

Virtual Addresses Page Table RAM

Stack)

>

Heap L

Global / Static >l

Variables
Code Region

>

e Standard mapping of process memory to RAM
via a page table.

Step 2: After Fork

Virtual Addresses Page Table RAM

Stack >
): 1

Heap

>l

Global / Static

Variables

Code Region

Stack

Heap

Global / Static

Variables

Code Region

* The page table is copied, but the entries
initially point to the same pages in RAM.

Copy on Write

 Copy on Write (CoW) prevents the

unnecessary coping of RAM pages until either
process writes to a RAM page.

e Particularly efficient in the case when exec() is
immediately use in the child process.

— Remember: exec() replaces the entire contents of
the process memory with a new program

Processes: System View

Managing Processes

* An operating system typically has tens or
hundreds of processes running.

e Each process is managed by information
contained in a Process Control Block (PCB).

— Information available only for the OS, not used by
the process itself.

Process Control Block

e The PCB Contains:

— Identifiers
* Process ID (PID), Parent Process ID (PPID)

— State Information
* Registers (program counter, stack pointer)
* Pointer to the page table, handles to open files
 Lots of other stuff (signals, privileges, resources)

— Scheduling Information
* Priority
* Accounting Information (when was it last ran?, how long?)
e Current State (waiting for 1/0?)

Who runs?

e Each CPU may only run one process at a time.

* How do we decide when someone else gets to
run?

— Modern systems use a hybrid of many strategies!

CPU Scheduling Strategy #1

* Time Slicing

— Give each process an equal-sized slice the CPU.
Kick the process off when its quantum expires.

— Advantages?

— Disadvantages?

CPU Scheduling Strategy #2

* Cooperative Multi-tasking

— Each process will cooperate, yield()ing every so
often to allow other processes to run.

— Advantages?

— Disadvantages?

CPU Scheduling Strategy #3

* Multi-programming

— During every system call, determine if the process
should be swapped out.

— Advantages?

— Disadvantages?

Modeling Processes

* Two-state process diagram:

* |sit important to know why something is not
running?

Five State Process Diagram

° I blocked

Other Process Models Exist

e Seven State:

...also 9 and 11 state diagrams.

* The more states will more completely describe
each process. In CS 241, we will only worry
about five.

Image Source: http://en.wikipedia.org/wiki/File:Process_states.svg

Context Switch

° || blocked

Content Switch

* A content switch is the system event when a CPU
switches from one process to another.

e Significant overhead:
— Save CPU state (registers) and PCB

* Page table (4 KB), etc

— Scheduling Overhead

* Save accounting information
* Decide the next process to run, queue the old process

— Load the new process state and PCB

Tomorrow

* Threads!

