
Processes

CS 241

Announcements

• About 1/4th Done!

– 2/8 MPs are complete

– 2/8 weeks of lecture are complete

• Wade’s Office Hours Moved

– Mondays, 1pm-2pm (after class)

• MP3

fork()

• You already know about fork()…

– fork(): Create a new process. The child process is
nearly an exact copy of the parent process.

– Parent: Returns PID of the child (value >0)

– Child: Returns 0.

• Can get PPID by calling getppid().

fork() Example

void main()

{

 int k = 3;

 pid_t pid = fork();

 if (pid == 0) { k += 1; }

 else { k += 2; }

 printf("%d\n", k);

}

fork() Example #2

void main()

{

 int k = 3;

 pid_t pid = fork();

 if (pid == 0) { k += 5; }

 k += 10;

 printf("%d: %d\n", getpid(), k);

}

Parent ID: 100
Child ID: 200

wait()

• You already know about wait()…

– wait(): Wait for a child process to terminate.

• Another variant, waitpid()…

– waitpid(): Waits for a specific child process to
terminate.

fork()+wait() Example

void main()

{

 int k = 3;

 pid_t pid = fork();

 if (pid == 0) { k += 1; }

 else { k += 2; wait(); }

 printf("%d\n", k);

}

fork()+wait() Example #2

void main()

{

 int k = 3;

 pid_t pid = fork();

 if (pid > 0) {

 pid = fork();

 k += 10;

 if (pid > 0) { k += 20; wait(); }

 }

 printf("%d\n", k);

}

fork()+wait() Example #3

void main()

{

 int k = 3;

 pid_t pid = fork();

 if (pid == 0) {

 pid = fork();

 wait();

 k += 10;

 }

 printf("%d\n", k);

}

exec()

• exec(): Execute a file

– The exec() family of functions replaces the
current process image with a new process image.

– The exec() function call never returns if successful.

– exec() broadly refers to a set of six functions that
do the same with different parameters.

fork()+exec()+wait()

void run(char *command_line)

{

 pid_t pid = fork();

 if (pid == 0) { /* Child */

 exec(command_line);

 perror("Failed to exec()");

 exit(1);

 } else if (pid > 0) { /* Parent */

 waitpid(pid);

 } else { /* fork() Error */

 perror("Failed to fork()");

}

}

Launch a new process…

• The fork()+exec()+wait() sequence is so
common there is a library call to do it for you!

– system(): executes a shell command

– Use this on MP3!

How does this work in memory?

• A process footprint is quite large…

– A small process is easily several MB in RAM.

Step 1: Before Fork

Heap

Code Region

Global / Static
Variables

Stack

… …

…

• Standard mapping of process memory to RAM
via a page table.

Virtual Addresses Page Table RAM

Step 2: After Fork

Heap

Code Region

Global / Static
Variables

Stack

… …

…

• The page table is copied, but the entries
initially point to the same pages in RAM.

Virtual Addresses Page Table RAM

Heap

Code Region

Global / Static
Variables

Stack

… …

Copy on Write

• Copy on Write (CoW) prevents the
unnecessary coping of RAM pages until either
process writes to a RAM page.

• Particularly efficient in the case when exec() is
immediately use in the child process.

– Remember: exec() replaces the entire contents of
the process memory with a new program

Processes: System View

CS 241

Managing Processes

• An operating system typically has tens or
hundreds of processes running.

• Each process is managed by information
contained in a Process Control Block (PCB).

– Information available only for the OS, not used by
the process itself.

Process Control Block

• The PCB Contains:
– Identifiers

• Process ID (PID), Parent Process ID (PPID)

– State Information
• Registers (program counter, stack pointer)

• Pointer to the page table, handles to open files

• Lots of other stuff (signals, privileges, resources)

– Scheduling Information
• Priority

• Accounting Information (when was it last ran?, how long?)

• Current State (waiting for I/O?)

Who runs?

• Each CPU may only run one process at a time.

• How do we decide when someone else gets to
run?

– Modern systems use a hybrid of many strategies!

CPU Scheduling Strategy #1

• Time Slicing

– Give each process an equal-sized slice the CPU.
Kick the process off when its quantum expires.

– Advantages?

– Disadvantages?

CPU Scheduling Strategy #2

• Cooperative Multi-tasking

– Each process will cooperate, yield()ing every so
often to allow other processes to run.

– Advantages?

– Disadvantages?

CPU Scheduling Strategy #3

• Multi-programming

– During every system call, determine if the process
should be swapped out.

– Advantages?

– Disadvantages?

Modeling Processes

• Two-state process diagram:

• Is it important to know why something is not
running?

running not
running

Five State Process Diagram

new ready

running done

blocked

Other Process Models Exist

• Seven State:

 …also 9 and 11 state diagrams.

• The more states will more completely describe
each process. In CS 241, we will only worry
about five.

Image Source: http://en.wikipedia.org/wiki/File:Process_states.svg

Context Switch

new ready

running done

blocked

Content Switch

• A content switch is the system event when a CPU
switches from one process to another.

• Significant overhead:
– Save CPU state (registers) and PCB

• Page table (4 KB), etc

– Scheduling Overhead
• Save accounting information

• Decide the next process to run, queue the old process

– Load the new process state and PCB

Tomorrow

• Threads!

