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Page Tables So Far 

• Virtual Addresses are made up of two 
identifiable parts: 

– Page Number 

– Page Offset 

 

• Page Tables provide translation from a Virtual 
Address to a Physical Address. 

– Made up of a table of Page Table Entries (PTEs). 



Page Tables So Far 

• Each PTE consists of, in part: 
– Resident Bit: Is it in RAM or on disk? 

– Physical Page Number: Where is it located in RAM 
or on disk? 

 

• When a page needs to be evicted from RAM 
(to disk) for another page to be loaded, there 
are five algorithms: 
– Optimal, FIFO, LRU, LFU, and MRU 



Page Fault 

• The term Page Fault describes the event when 
a virtual memory address is accessed and is 
not in resident in RAM. 

 Virtual Memory Address: 0x38940392 

Virtual Page Number: 0x38940 
Page Fault 

 Page Offset: 0x392 

0x38940392 

0 (Physical/Disk Page #) 



Page Fault 

• When a Page Fault occurs: 

– Check if there is a free page of memory in RAM. 

• If so, load the data to the empty page in RAM. 

• If not, invoke a page replacement algorithm. 
– FIFO, LRU, LFU, MRU, … 

– What does x86 processers use? 

 

 

 



Reference Bit 

• A second bit present in modern page tables is 
a Reference Bit. 

– 1: The page was recently referenced. 

– 0: The page has not been recently referenced. 

 

• Every time the page is accessed (read/write), 
the reference bit is set to 1. 

 

 



Using the Reference Bit 

• When a page needs to be evicted, the page 
table is scanned. 

– If the page is in RAM (resident): 

• If Ref=1, set it Ref=0. 

• If Ref=0, evict page. 

 

– Store the pointer to continue 
the scan at the same position 
next eviction cycle. 

 



Reference Bit 

• The Reference Bit implements a LRU-like 
algorithm with only 1 bit of storage /PTE. 

– Used in x86 processors. 

 

• Other algorithms exist for determining page 
evictions. 

– More bits allow for increasingly complex 
functionality.  (FIFO, LRU, MRU, LRU, etc.) 

 

 



Evicting Pages: Slow? 

• When a page is evicted, the data has to be 
written to the hard disk. 

– Much slower than RAM 

– Can this be optimized? 



Dirty Bit 

• Each PTE contains a bit to denote if the page 
has been written to since it was loaded. 

– 1: Data is “dirty”, has been written. 

– 0: Data is “clean”, same as when it was loaded. 

 

– Implementation is done in the OS, not hardware. 



Protection Bits 

• Each PTE also contains bits to protect regions 
of memory. 

– Read/Write Bit 

• 1: Enable both reading and writing to the memory. 

• 0: Enable only reading to the memory. 

– No Execute (NX) Bit 

• 1: Prevent the memory page’s data from being 
executed. 

• 0: Allow execution of the memory page’s data. 

 



Permission Bits 

Heap 

Code Region 

Global / Static Variables 

Stack 

32-bit Machine: 
4 GB addressable space 

Read/Write? Execute? 



Other Bits 

• The bits discussed so-far are common across 
every modern page table implementation: 

– Resident Bit 

– Eviction Bit(s) 

• In x86: Reference Bit 

– Dirty Bit 

– Read/Write Bit 

– NX Bit 

 

 



Other Bits 

• Other bits are present on PTEs for various 
purposes: 

– Optimizations 

– Caching 

– Variable-sized Pages 

– Additional Permissions/Protections 

– … 

 

 



Putting it All Together… 

• Lets assume we have another simple system… 

– Size of a page: 

• Enough to store one stack frame  OR 

• Enough to store one program’s function  OR 

• Enough to store a small heap 



int subtract(int a, int *b) { 

     int c = a – *b; 

     return c; 

} 

 

int add(int a, int *b) 

{ 

     int c = a + *b; 

     return c; 

} 

 

void main() 

{ 

     int a = 4; 

     int *b = malloc(sizeof(int)); 

     *b = 7; 

     int c = add(a, b); 

     int d = subtract(c, b); 

} 
[0] 

[1] 

[2] 

[3] 

[98] 

[100] 

[99] 

Virtual Page Number 
Virtual Memory 

0x0 

0xff...fff 



int subtract(int a, int *b) { 

     int c = a – *b; 

     return c; 

} 

 

int add(int a, int *b) { 

     int c = a + *b; 

     return c; 

} 

 

void main() { 

     int a = 4; 

     int *b = malloc(sizeof(int)); 

     *b = 7; 

     int c = add(a, b); 

     int d = subtract(c, b); 

} 

Virtual Memory 

Page Tabe 
RES DIRT RW NX REF PAGE 

[100] 

[99] 

[98] 

[3] 

[2] 

[1] 

[0] 

RAM 

RAM Page 1 

RAM Page 0 

RAM Page 2 

RAM Page 3 

Hard Drive 

HD[0] 

HD[1] 

HD[2] 

HD[3] 

HD[4] 

HD[5] 



int subtract(int a, int *b) { 

     int c = a – *b; 

     return c; 

} 

 

int add(int a, int *b) { 

     int c = a + *b; 

     return c; 

} 

 

void main() { 

     int a = 4; 

     int *b = malloc(sizeof(int)); 

     *b = 7; 

     int c = add(a, b); 

     int d = subtract(c, b); 

} 

Virtual Memory 

Page Tabe 
RES DIRT RW NX REF PAGE 

[100] 

[99] 

[98] 

[3] 

[2] 

[1] 

[0] 

RAM 

RAM Page 1 

RAM Page 0 

RAM Page 2 

RAM Page 3 

Hard Drive 

HD[0] 

HD[1] 

HD[2] 

HD[3] 

HD[4] 

HD[5] 



int subtract(int a, int *b) { 

     int c = a – *b; 

     return c; 

} 

 

int add(int a, int *b) { 

     int c = a + *b; 

     return c; 

} 

 

void main() { 

     int a = 4; 

     int *b = malloc(sizeof(int)); 

     *b = 7; 

     int c = add(a, b); 

     int d = subtract(c, b); 

} 

Virtual Memory 

Page Tabe 
RES DIRT RW NX REF PAGE 

[100] 

[99] 

[98] 

[3] 

[2] 

[1] 

[0] 

RAM 

RAM Page 1 

RAM Page 0 

RAM Page 2 

RAM Page 3 

Hard Drive 

HD[0] 

HD[1] 

HD[2] 

HD[3] 

HD[4] 

HD[5] 



Multi-Level Page Tables! 
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int subtract(int a, int *b) { 

     int c = a – *b; 

     return c; 

} 

 

int add(int a, int *b) { 

     int c = a + *b; 

     return c; 

} 

 

void main() { 

     char *b = malloc(sizeof(int)); 

     *(b + 1000) = 9; 

} 
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Segmentation Faults 

• A “Seg Fault” occurs when an access is made 
to a virtual memory address that cannot be 
resolved. 

 



Segmentation Faults 

• Example: 

void *b = malloc(300); 

 

 

 

 

Q1: What does *(b + 400) = 9 do? 

Q2: What does *(b + 900) = 9 do? 

 

 

 

Page #18   (Each block is 100 B) 

b 

#18: 



x86 Page Table 

• In x86: 

– Pages are 4 KB in size 

– Virtual Addresses are 32-bits 

– Each PTE is 4 B in size 

 

• How large is the Page Table for each process? 



Multi-Level Page Table 

• Solution: Create multiple levels of tables to 
look up a physical memory address. 

 
First Level Page Table 

Second Level Page Table 



Multi-Level Page Table 

• Advantage: 

 

 

• Disadvantage: 



Multi-Level Page Tables 

• Each virtual address can now be divided into 
(n+1) different pieces for an (n) level page 
table. 

– Example: Two Level Page Table: 

• First Level Page Number 

• Second Level Page Number 

• Page Offset 



• Given 

– 32-bit Virtual Addresses 

– 4 KB Pages 

– 12-bit First Level Page Table Number 

 

• What are the components of the address: 
                              0x48503423 



• Given 

– 32-bit Virtual Addresses 

– 64 KB Pages 

– 8-bit First Level Page Table Number 

 

• What are the components of the address: 
                              0x48503423 



• Given 

– 32-bit Virtual Addresses 

– 4 KB Pages 

– 4 B page table entries 

 

• How many PTEs fit into one page? 



Multi-Level Page Tables in x86 

• In x86, a two-level page table is used. 

– 10-bit Address for the First Level Page Table 

– 10-bit Address for the Second Level Page Table 

– 12-bit Address for the Page Offset 

 

• Result: 

– Every single page table fits into one page 

– When a new process is context switched in, only one 
page needs to initially be loaded for the page table 



 



Review of Memory 

• Every process has its own virtual memory 
address space (0x0 – 0xff…fff). 

 

• Inside that virtual memory space, identify four 
key regions of memory: 
–   

–   

–   

–   



Review of Memory 

• To a process, a heap is one contiguous chunk 
of memory. 

– As memory is allocated and free’d, holes develop 
in the contiguous chunk of memory. 

 

– Three strategies to manage this memory space: 

•   

•   

•   

 



Review of Memory 

• At a system level, the virtual memory for each 
process must be mapped to physical storage. 

 

• Two key methods: 

–   

–   



Review of Memory 

• To implement paging, we use a page table 
made up of page table entries.  Key 
information contained in each PTE includes: 
–   

–   

–   

–   

–   

–   



Review of Memory 

• When the system runs out of available RAM to 
store data, pages that likely won’t be accessed 
in the near future are paged-out. 

– Five Strategies: 

•   

•   

•   

•   

•   



Review of Memory 

• The page table itself is a large data structure.  
Modern systems break up this page table into 
multiple levels. 

– Key Idea: Identify the number of bits required for 
every step in memory address translation. 

– Understand the address translation process. 

 


