
Paging

CS 241

Page Tables So Far

• Virtual Addresses are made up of two
identifiable parts:

– Page Number

– Page Offset

• Page Tables provide translation from a Virtual
Address to a Physical Address.

– Made up of a table of Page Table Entries (PTEs).

Page Tables So Far

• Each PTE consists of, in part:
– Resident Bit: Is it in RAM or on disk?

– Physical Page Number: Where is it located in RAM
or on disk?

• When a page needs to be evicted from RAM
(to disk) for another page to be loaded, there
are five algorithms:
– Optimal, FIFO, LRU, LFU, and MRU

Page Fault

• The term Page Fault describes the event when
a virtual memory address is accessed and is
not in resident in RAM.

 Virtual Memory Address: 0x38940392

Virtual Page Number: 0x38940
Page Fault

 Page Offset: 0x392

0x38940392

0 (Physical/Disk Page #)

Page Fault

• When a Page Fault occurs:

– Check if there is a free page of memory in RAM.

• If so, load the data to the empty page in RAM.

• If not, invoke a page replacement algorithm.
– FIFO, LRU, LFU, MRU, …

– What does x86 processers use?

Reference Bit

• A second bit present in modern page tables is
a Reference Bit.

– 1: The page was recently referenced.

– 0: The page has not been recently referenced.

• Every time the page is accessed (read/write),
the reference bit is set to 1.

Using the Reference Bit

• When a page needs to be evicted, the page
table is scanned.

– If the page is in RAM (resident):

• If Ref=1, set it Ref=0.

• If Ref=0, evict page.

– Store the pointer to continue
the scan at the same position
next eviction cycle.

Reference Bit

• The Reference Bit implements a LRU-like
algorithm with only 1 bit of storage /PTE.

– Used in x86 processors.

• Other algorithms exist for determining page
evictions.

– More bits allow for increasingly complex
functionality. (FIFO, LRU, MRU, LRU, etc.)

Evicting Pages: Slow?

• When a page is evicted, the data has to be
written to the hard disk.

– Much slower than RAM

– Can this be optimized?

Dirty Bit

• Each PTE contains a bit to denote if the page
has been written to since it was loaded.

– 1: Data is “dirty”, has been written.

– 0: Data is “clean”, same as when it was loaded.

– Implementation is done in the OS, not hardware.

Protection Bits

• Each PTE also contains bits to protect regions
of memory.

– Read/Write Bit

• 1: Enable both reading and writing to the memory.

• 0: Enable only reading to the memory.

– No Execute (NX) Bit

• 1: Prevent the memory page’s data from being
executed.

• 0: Allow execution of the memory page’s data.

Permission Bits

Heap

Code Region

Global / Static Variables

Stack

32-bit Machine:
4 GB addressable space

Read/Write? Execute?

Other Bits

• The bits discussed so-far are common across
every modern page table implementation:

– Resident Bit

– Eviction Bit(s)

• In x86: Reference Bit

– Dirty Bit

– Read/Write Bit

– NX Bit

Other Bits

• Other bits are present on PTEs for various
purposes:

– Optimizations

– Caching

– Variable-sized Pages

– Additional Permissions/Protections

– …

Putting it All Together…

• Lets assume we have another simple system…

– Size of a page:

• Enough to store one stack frame OR

• Enough to store one program’s function OR

• Enough to store a small heap

int subtract(int a, int *b) {

 int c = a – *b;

 return c;

}

int add(int a, int *b)

{

 int c = a + *b;

 return c;

}

void main()

{

 int a = 4;

 int *b = malloc(sizeof(int));

 *b = 7;

 int c = add(a, b);

 int d = subtract(c, b);

}
[0]

[1]

[2]

[3]

[98]

[100]

[99]

Virtual Page Number
Virtual Memory

0x0

0xff...fff

int subtract(int a, int *b) {

 int c = a – *b;

 return c;

}

int add(int a, int *b) {

 int c = a + *b;

 return c;

}

void main() {

 int a = 4;

 int *b = malloc(sizeof(int));

 *b = 7;

 int c = add(a, b);

 int d = subtract(c, b);

}

Virtual Memory

Page Tabe
RES DIRT RW NX REF PAGE

[100]

[99]

[98]

[3]

[2]

[1]

[0]

RAM

RAM Page 1

RAM Page 0

RAM Page 2

RAM Page 3

Hard Drive

HD[0]

HD[1]

HD[2]

HD[3]

HD[4]

HD[5]

int subtract(int a, int *b) {

 int c = a – *b;

 return c;

}

int add(int a, int *b) {

 int c = a + *b;

 return c;

}

void main() {

 int a = 4;

 int *b = malloc(sizeof(int));

 *b = 7;

 int c = add(a, b);

 int d = subtract(c, b);

}

Virtual Memory

Page Tabe
RES DIRT RW NX REF PAGE

[100]

[99]

[98]

[3]

[2]

[1]

[0]

RAM

RAM Page 1

RAM Page 0

RAM Page 2

RAM Page 3

Hard Drive

HD[0]

HD[1]

HD[2]

HD[3]

HD[4]

HD[5]

int subtract(int a, int *b) {

 int c = a – *b;

 return c;

}

int add(int a, int *b) {

 int c = a + *b;

 return c;

}

void main() {

 int a = 4;

 int *b = malloc(sizeof(int));

 *b = 7;

 int c = add(a, b);

 int d = subtract(c, b);

}

Virtual Memory

Page Tabe
RES DIRT RW NX REF PAGE

[100]

[99]

[98]

[3]

[2]

[1]

[0]

RAM

RAM Page 1

RAM Page 0

RAM Page 2

RAM Page 3

Hard Drive

HD[0]

HD[1]

HD[2]

HD[3]

HD[4]

HD[5]

Multi-Level Page Tables!

CS 241

int subtract(int a, int *b) {

 int c = a – *b;

 return c;

}

int add(int a, int *b) {

 int c = a + *b;

 return c;

}

void main() {

 char *b = malloc(sizeof(int));

 *(b + 1000) = 9;

}

Virtual Memory

Page Tabe
RES DIRT RW NX REF PAGE

[100]

[99]

[98]

[3]

[2]

[1]

[0]

RAM

RAM Page 1

RAM Page 0

RAM Page 2

RAM Page 3

Hard Drive

HD[0]

HD[1]

HD[2]

HD[3]

HD[4]

HD[5]

Segmentation Faults

• A “Seg Fault” occurs when an access is made
to a virtual memory address that cannot be
resolved.

Segmentation Faults

• Example:

void *b = malloc(300);

Q1: What does *(b + 400) = 9 do?

Q2: What does *(b + 900) = 9 do?

Page #18 (Each block is 100 B)

b

#18:

x86 Page Table

• In x86:

– Pages are 4 KB in size

– Virtual Addresses are 32-bits

– Each PTE is 4 B in size

• How large is the Page Table for each process?

Multi-Level Page Table

• Solution: Create multiple levels of tables to
look up a physical memory address.

First Level Page Table

Second Level Page Table

Multi-Level Page Table

• Advantage:

• Disadvantage:

Multi-Level Page Tables

• Each virtual address can now be divided into
(n+1) different pieces for an (n) level page
table.

– Example: Two Level Page Table:

• First Level Page Number

• Second Level Page Number

• Page Offset

• Given

– 32-bit Virtual Addresses

– 4 KB Pages

– 12-bit First Level Page Table Number

• What are the components of the address:
 0x48503423

• Given

– 32-bit Virtual Addresses

– 64 KB Pages

– 8-bit First Level Page Table Number

• What are the components of the address:
 0x48503423

• Given

– 32-bit Virtual Addresses

– 4 KB Pages

– 4 B page table entries

• How many PTEs fit into one page?

Multi-Level Page Tables in x86

• In x86, a two-level page table is used.

– 10-bit Address for the First Level Page Table

– 10-bit Address for the Second Level Page Table

– 12-bit Address for the Page Offset

• Result:

– Every single page table fits into one page

– When a new process is context switched in, only one
page needs to initially be loaded for the page table

Review of Memory

• Every process has its own virtual memory
address space (0x0 – 0xff…fff).

• Inside that virtual memory space, identify four
key regions of memory:
–

–

–

–

Review of Memory

• To a process, a heap is one contiguous chunk
of memory.

– As memory is allocated and free’d, holes develop
in the contiguous chunk of memory.

– Three strategies to manage this memory space:

•

•

•

Review of Memory

• At a system level, the virtual memory for each
process must be mapped to physical storage.

• Two key methods:

–

–

Review of Memory

• To implement paging, we use a page table
made up of page table entries. Key
information contained in each PTE includes:
–

–

–

–

–

–

Review of Memory

• When the system runs out of available RAM to
store data, pages that likely won’t be accessed
in the near future are paged-out.

– Five Strategies:

•

•

•

•

•

Review of Memory

• The page table itself is a large data structure.
Modern systems break up this page table into
multiple levels.

– Key Idea: Identify the number of bits required for
every step in memory address translation.

– Understand the address translation process.

