

Copyright ©: University of Illinois CS 241 Staff 1

Processes

Processes

 What is a process?

 Birth

 How do I make one?

 Life

 Wait for one?

 Death

 Kill one?

Copyright ©: University of Illinois CS 241 Staff 2

Program or Process?

 Process

 A process is the context (the information/data)

maintained for an executing program

 An executable instance of a program

 A program can have many processes

 Each process has a unique identifier

 Unix processes

 Process #1 is known as the 'init' process (root

of the process hierarchy)

Copyright ©: University of Illinois CS 241 Staff 3

What makes up a process?

 Program code

 Machine registers

 Global data

 Stack

 Open files

 An environment

Copyright ©: University of Illinois CS 241 Staff 4

Process Context

 Process ID (pid) unique integer

 Parent process ID (ppid) unique integer

 Current directory

 File descriptor table

 Environment VAR=VALUE pairs

 Pointer to program code

 Pointer to data Mem for global vars

 Pointer to stack Mem for local vars

 Pointer to heap Dynamically

 allocated memory

 Execution priority

 Signal information

Copyright ©: University of Illinois CS 241 Staff 5

Unix Processes

 Address space

 The address space is a section of memory that contains

the code to execute as well as the process stack

 Set of data structures in the kernel to keep track of

that process

 Address space map

 Current status of the process

 Execution priority of the process

 Resource usage of the process

 Current signal mask

 Owner of the process

Copyright ©: University of Illinois CS 241 Staff 6

Process Lifetime

 Some processes run from system boot to

shutdown

 Servers & Daemons

(e.g. Apache httpd server)

 Most processes come and go rapidly, as

tasks start and complete

 'unit of work' on a modern computer

 A process can die a premature, even

horrible death (say, due to a crash)

Copyright ©: University of Illinois CS 241 Staff 7

Know your process

 Each process has a unique identifier

int myid = getpid()

Copyright ©: University of Illinois CS 241 Staff 8

What is wrong with

this?

Know your process

 better…

pid_t myid = getpid()

 pid_t: int in linux,

 pid_t: long in other systems

 Know your parent

pid_t myparentid = getppid()

Copyright ©: University of Illinois CS 241 Staff 9

Process Creation

 On creation, process needs resources

 CPU, memory, files, I/O devices

 Get resources from the OS or from the

parent process

 Child process is restricted to a subset of parent

resources

 Prevents many processes from overloading

system

Copyright ©: University of Illinois CS 241 Staff 10

Process Creation

 Execution options

 Parent continues concurrently with child

 Parent waits until child has terminated

 Address space options

 Child process is duplicate of parent process

 Child process has a new program loaded into it

Copyright ©: University of Illinois CS 241 Staff 11

Creating a Process – fork()

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

 Create a child process

 The child is an (almost) exact copy of the parent

 The new process and the old process both continue in
parallel from the statement that follows the fork()

 Returns:

 To child

 0 on success

 To parent

 process ID of the child process

 -1 on error, sets errno

Copyright ©: University of Illinois CS 241 Staff 12

Program

Text

Creating a Process – fork()

Copyright ©: University of Illinois CS 241 Staff 13

Shared

Program

Text Data
Copy

of Data

Parent

pid = fork() Child

pid == 0

In the child:
pid == 0;

In the

parent:
pid == the

process ID

of the child

A program can use this pid difference to do

different things in the parent and child

Example – fork()

int pid;

int status = 0;

if (pid = fork()) {

 /* parent */

 …..

 pid = wait(&status);

} else {

 /* child */

 …..

 exit(status);

}

Copyright ©: University of Illinois CS 241 Staff 14

Parent uses wait to sleep until the
child exits.
wait returns child pid and status.

fork returns twice:
Parent: pid == child process ID (pid)
Child: pid == 0

Creating a Process – fork()

 The child process is an exact copy of the

parent process except

 The child process has a unique process ID

 The child process has a different parent process

ID (i.e., the process ID of the calling process)

 The child process has its own copy of the

parent's file descriptors

 and some other stuff about memory and stuff

that we’ll learn later …

Copyright ©: University of Illinois CS 241 Staff 15

Example – fork()

Challenge:

write code so that child prints
'CHILD: my id is ___ and my parent id is ___'

and parent prints
'PARENT:my id is ___ and the child's id is ___'

Copyright ©: University of Illinois CS 241 Staff 16

How does fork work?

 Parent

 mypid = 4, myppid = 1

int forked_pid , wait_pid;

int status = 0;

if (forked_pid = fork()) {

 /* parent */

 …..

 wait_pid = wait(&status);

} else {

 /* child */

 …..

 exit(status);

}

 Child

 mypid = 6, myppid = 4

int forked_pid, wait_pid;

int status = 0;

if (forked_pid = fork()) {

 /* parent */

 …..

 wait_pid = wait(&status);

} else {

 /* child */

 …..

 exit(status);

}

Copyright ©: University of Illinois CS 241 Staff

How does fork really work?

 Parent

 mypid = 4, myppid = 1

int forked_pid , wait_pid;

int status = 0;

if (forked_pid = fork()) {

 /* parent */

 …..

 wait_pid = wait(&status);

} else {

 /* child */

 …..

 exit(status);

}

 Child

 mypid = 6, myppid = 4

int forked_pid , wait_pid;

int status = 0;

Copyright ©: University of Illinois CS 241 Staff

Chain and Fan

Chain

 Write code to make

chain

Fan

 Code to make N children

of one parent process?

Copyright ©: University of Illinois CS 241 Staff 20

Child Child Parent

Parent

Child Child
… …

Chain and Fan

Chain

pid_t childpid = 0;

for (i=1;i<n;i++)

 if (childpid = fork())

 break;

Fan

Copyright ©: University of Illinois CS 241 Staff 21

Child Child Parent

Parent

Child Child
… …

Chain and Fan

Chain

pid_t childpid = 0;

for (i=1;i<n;i++)

 if (childpid = fork())

 break;

Fan

pid_t childpid = 0;

for (i=1;i<n;i++)

 if ((childpid = fork())

 <=0)

 break;

Copyright ©: University of Illinois CS 241 Staff 22

Child Child Parent

Parent

Child Child
… …

Example – fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

 pid_t pid; /* could be int */

int i;

pid = fork();

Copyright ©: University of Illinois CS 241 Staff 23

Example – fork()

 if(pid > 0) { /* parent */

 for(i=0; i < 1000; i++)

 printf(“\t\t\tPARENT %d\n”, i);

 } else { /* child */

 for(i=0; i < 1000; i++)

 printf(“CHILD %d\n”, i);

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 24

What will the output be?

Example – fork()

Notes

 i is copied between parent and child

 Switching between parent and child

depends on many factors

 Machine load, system process scheduling

 I/O buffering effects amount of output shown

 Output interleaving is nondeterministic

 Cannot determine output by looking at code

Copyright ©: University of Illinois CS 241 Staff 26

Waiting for a child to finish –
wait()

#include <sys/types.h>

#include <wait.h>

pid_t wait(int *status);

 Suspend calling process until child has finished

 Returns:

 Process ID of terminated child on success

 -1 on error, sets errno

 Parameters:
 status: status information set by wait and evaluated

using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff 27

Waiting for any child to finish

#include <errno.h>

#include <sys/wait.h>

pid_t childpid;

childpid = wait(NULL);

if (childpid != -1)

 printf(“waited for child with pid %ld\n”,

 childpid);

(see “man 2 wait”)

Copyright ©: University of Illinois CS 241 Staff 28

wait() Function

Copyright ©: University of Illinois CS 241 Staff 29

 Allows parent process

to wait (block) until

child finishes

 Causes the caller to

suspend execution

until child’s status is

available

errno cause

ECHILD Caller has no

unwaited-for

children

EINTR Function was

interrupted by

signal

EINVAL Options

parameter of

waitpid was

invalid

Waiting for a child to finish –
waitpid()

#include <sys/types.h>

#include <wait.h>

pid_t waitpid(pid_t pid, int *status, int
options);

 Suspend calling process until child specified by pid

has finished

 Returns:

 Process ID of terminated child on success

 0 if WNOHANG and no child available, sets errno

 -1 on error, sets errno

 Parameters:
 status: status information set by wait and evaluated

using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff 30

Waiting for a child to finish –
waitpid()

#include <sys/types.h>

#include <wait.h>

pid_t waitpid(pid_t pid, int *status, int
options);

 Suspend calling process until child specified by pid

has finished

 Parameters:
 pid:

 < -1: wait for any child process whose process group ID is
equal to the absolute value of pid.

 -1 wait for any child process (same as wait)

 0 wait for any child process whose process group ID is equal
to that of the calling process.

 > 0 wait for the child whose process ID is equal to the value
of pid.

Copyright ©: University of Illinois CS 241 Staff 31

Waiting for a child to finish –
waitpid()

#include <sys/types.h>

#include <wait.h>

pid_t waitpid(pid_t pid, int *status, int
options);

 Suspend calling process until child specified by pid

has finished

 Parameters:
 options:

 WNOHANG: return immediately if no child has exited.

 WUNTRACED: return for children that are stopped, and whose
status has not been reported.

Copyright ©: University of Illinois CS 241 Staff 32

Process Termination

 Upon completion of last statement

 A process automatically asks the OS to delete it

 All of the child’s resources are de-allocated

 Child process may return output to parent process

 Other termination possibilities: Aborted by parent

process

 Child has exceeded its usage of some resources

 Task assigned to child is no longer required

 Parent is exiting and OS does not allow child to continue

without parent

Copyright ©: University of Illinois CS 241 Staff 33

Process Termination

 Voluntary

termination

 Normal exit

 End of main()

 exit(0);

 Error exit
 exit(2)

 Involuntary

termination

 Fatal error

 Divide by 0, core

dump / seg fault

 Killed by another

process

 kill procID, end

task

Copyright ©: University of Illinois CS 241 Staff 34

How to List all Processes?

 On Windows: run Windows task
manager

 Hit Control+Shift+Esc

 Click on the “processes” tab

 On UNIX
 > ps –e also, pstree

 Try “man ps”

Copyright ©: University of Illinois CS 241 Staff 35

Example – fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

 pid_t pid; /* could be int */

int i;

pid = fork();

if(pid > 0) { /* parent */

 for(i=0; i < 1000; i++)

 printf(“\t\t\tPARENT %d\n”, i);

 }

 else { /* child */

 for(i=0; i < 1000; i++)

 printf(“CHILD %d\n”, i);

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 36

How can you use
ps to see the

processes that
are created?

Next Week: Memory!

Copyright ©: University of Illinois CS 241 Staff 38

