
Copyright ©: University of Illinois CS 241 Staff 1

System Calls and I/O

Announcements

 cs241help-su12@cs.illinois.edu

 Was misconfigured on Monday/Tuesday

 If you sent an e-mail to that address, please

resend it.

 Tested, verified, and it’s working now!

 Nightly Autograder

 HW1 Due Tonight (11:59pm, on svn)

Copyright ©: University of Illinois CS 241 Staff 2

Three types of calls…

 Function Call

 Library Function Call

 “Library Function”

 “Library Call”

 System Call

 “syscall”
Copyright ©: University of Illinois CS 241 Staff 3

Three types of calls…

Copyright ©: University of Illinois CS 241 Staff 4

Function Calls

Library Function Calls

System Calls

Three types of calls…

 Function Call

 Library Function Call

 “Library Function”

 “Library Call”

 System Call

 “syscall”
Copyright ©: University of Illinois CS 241 Staff 5

Process

Caller and callee are in the same

Process

 - Same user

 - Same “domain of trust”

Function Call

System Calls versus Function

Calls

Copyright ©: University of Illinois CS 241 Staff 6

fnCall()

System Calls versus Function

Calls

Copyright ©: University of Illinois CS 241 Staff 7

fnCall()

Process

Caller and callee are in the same

Process

 - Same user

 - Same “domain of trust”

Function Call

sysCall()

Process

System Call

OS

- OS is trusted; user is not.

- OS has super-privileges; user does not

- Must take measures to prevent abuse

System Calls

 System Calls

 A request to the operating system to perform some activity

 System calls are expensive

 The system needs to perform many things before

executing a system call

 The computer (hardware) saves its state

 The OS code takes control of the CPU, privileges are

updated.

 The OS examines the call parameters

 The OS performs the requested function

 The OS saves its state (and call results)

 The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff 8

Steps for Making a System

Call (Example: read call)

Copyright ©: University of Illinois CS 241 Staff 9

1 – 3: Push

parameter (in

reverse order)

4 – 5: Library call

(puts syscall # in

CPU register)

6: Switch to kernel

mode (return

address saved on

stack)

7: Find system call

handler

8: Run handler

(index via table of

pointers to

syscall handles)

9: Return to user

mode

10: Return to user

program (via trap)

11: Clean up

count = read(fd, buffer, nbytes);

Five categories of system calls

 Process Control

 fork(): Creates a child process

 exec(): Execute a new process image

 kill(): Terminate/signal a process

 wait(): Wait for a process to complete

 sbrk(): Increase process’ heap size

 …

Copyright ©: University of Illinois CS 241 Staff 10

Five categories of system calls

 File Management

 open(): Opens a file

 close(): Closes a file

 read(): Reads from a file

 write(): Writes to a file

 lseek(): Seek within a file

 …

Copyright ©: University of Illinois CS 241 Staff 11

Five categories of system calls

 Device Management

 mkdir(): Makes a directory

 rmdir(): Removes an empty directory

 link(): Creates a link to a file/directory

 unlink(): Removes the link

 mount(): Mount a device/file system

 unmount(): Removes the mount

 …

Copyright ©: University of Illinois CS 241 Staff 12

Five categories of system calls

 Information Management

 stat(): Get status of a file/directory

 times(): Process running times

 getrusage(): Resource usage

 clock_gettime(): Get system time

 clock_getres(): Clock resolution

 …

Copyright ©: University of Illinois CS 241 Staff 13

Five categories of system calls

 Communication

 pipe(): Communicate b/t two processes

 shmget(): Share memory b/t processes

 mmap(): Maps virtual memory

 socket(): Network socket

 connect(): Connect to a remote server

 accept(): Accept remote connection

 send(): Send network messages

 …

Copyright ©: University of Illinois CS 241 Staff 14

System Call Errors…

 When a system call fails, it sets a

special global variable: errno

Copyright ©: University of Illinois CS 241 Staff 15

Basic Unix Concepts

 Error Model
 Return value

 0 on success

 -1 on failure for functions returning integer values

 NULL on failure for functions returning pointers

 Examples (see errno.h)
#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or directory */

#define ESRCH 3 /* No such process */

#define EINTR 4 /* Interrupted system call */

#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

Copyright ©: University of Illinois CS 241 Staff 16

How do we know what is a

system call?

 2: System Call

 3: Library Call

Copyright ©: University of Illinois CS 241 Staff 17

Five categories of system calls

 Process Control

 File Management

 Device Management

 Information Management

 Communication

Copyright ©: University of Illinois CS 241 Staff 18

File System and I/O Related

System Calls

 A file system

 A means to organize, retrieve, and

update data in persistent storage

 A hierarchical arrangement of directories

 Bookkeeping information (file metadata)

 File length, # bytes, modified timestamp, etc

 Unix file system

 Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff 19

Why does the OS control I/O?

 Safety

 The computer must try to ensure that if a

program has a bug in it, then it doesn't crash or

mess up

 The system

 Other programs that may be running at the same time

or later

 Fairness

 Make sure other programs have a fair use of

device

Copyright ©: University of Illinois CS 241 Staff 20

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char* path, int flags [, int mode]);

 Open (and/or create) a file for reading, writing or both

 Returns:
 Return value 0 : Success - New file descriptor on success

 Return value = -1: Error, check value of errno

 Parameters:

 path: Path to file you want to use
 Absolute paths begin with “/”, relative paths do not

 flags: How you would like to use the file
 O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 21

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char* path, int flags [, int mode]);

 Open (and/or create) a file for reading, writing or both

 Returns:
 Return value 0 : Success - New file descriptor on success

 Return value = -1: Error, check value of errno

 Parameters:

 path: Path to file you want to use
 Absolute paths begin with “/”, relative paths do not

 flags: How you would like to use the file
 O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 22

File Descriptors

 Input/Output – I/O

 Per-process table of I/O channels

 Table entries describe files, sockets, devices, pipes, etc.

 Table entry/index into table called “file descriptor”

 Unifies I/O interface

Copyright ©: University of Illinois CS 241 Staff 23

user space

pipe

file

socket
Per-process file

descriptor

table

kernel
system open file

table

System Calls for I/O

 Three file descriptors are always defined:
 0 := stdout

 1 := stdin

 2 := stderr

Copyright ©: University of Illinois CS 241 Staff 24

System Calls for I/O

 Get information about a file

 int stat(const char* name, struct stat* buf);

 Open (and/or create) a file for reading, writing or both
int open (const char* name, in flags);

 Read data from one buffer to file descriptor
size_t read (int fd, void* buf, size_t cnt);

 Write data from file descriptor into buffer
size_t write (int fd, void* buf, size_t cnt);

 Close a file
int close(int fd);

Copyright ©: University of Illinois CS 241 Staff 25

System Calls for I/O

 They look like regular procedure calls but

are different

 A system call makes a request to the operating

system by trapping into kernel mode

 A procedure call just jumps to a procedure

defined elsewhere in your program

 Some library procedure calls may

themselves make a system call

 e.g., fopen() calls open()

Copyright ©: University of Illinois CS 241 Staff 26

POSIX I/O vs. C I/O

 open()

 read()

 write()

 lseek()

 close()

Copyright ©: University of Illinois CS 241 Staff 27

 fopen()

 fread()

 scanf()

 fgetc()

 fwrite()

 fprintf()

 fseek()

 fclose()

POSIX I/O vs. C I/O

 open()

 read()

 write()

 lseek()

 close()

Copyright ©: University of Illinois CS 241 Staff 28

 fopen()

 fread()

 scanf()

 fgetc()

 fwrite()

 fprintf()

 fseek()

 fclose()

POSIX I/O:

- More powerful functionally

- Only runs on POSIX systems

C I/O:

- General functionality

- Works on Windows/Linux/etc

- On Linux, calls POSIX I/O

File: Statistics

#include <sys/stat.h>

int stat(const char* name, struct stat* buf);

 Get information about a file

 Returns:
 0 on success

 -1 on error, sets errno

 Parameters:
 name: Path to file you want to use

 Absolute paths begin with “/”, relative paths do not

 buf: Statistics structure
 off_t st_size: Size in bytes

 time_t st_mtime: Date of last modification. Seconds since January 1,
1970

 Also
int fstat(int filedes, struct stat *buf);

Copyright ©: University of Illinois CS 241 Staff 29

File: Close

#include <fcntl.h>

int close(int fd);

 Close a file

 Tells the operating system you are done with a file

descriptor

 Return:

 0 on success

 -1 on error, sets errno

 Parameters:

 fd: file descriptor

Copyright ©: University of Illinois CS 241 Staff 30

Example (close())

#include <fcntl.h>

main(){

 int fd1;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

 perror("c1");

 exit(1);

 }

 if (close(fd1) < 0) {

 perror("c1");

 exit(1);

 }

 printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 31

Example (close())

#include <fcntl.h>

main(){

 int fd1;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

 perror("c1");

 exit(1);

 }

 if (close(fd1) < 0) {

 perror("c1");

 exit(1);

 }

 printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 32

After close, can you still use the

file descriptor?

Why do we need to close a file?

File: Read

#include <fcntl.h>

size_t read (int fd, void* buf, size_t cnt);

 Read data from one buffer to file descriptor
 Read size bytes from the file specified by fd into the memory location

pointed to by buf

 Return: How many bytes were actually read

 Number of bytes read on success

 0 on reaching end of file

 -1 on error, sets errno

 -1 on signal interrupt, sets errno to EINTR

 Parameters:

 fd: file descriptor

 buf: buffer to read data from

 cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 33

File: Read

size_t read (int fd, void* buf, size_t cnt);

 Things to be careful about

 buf needs to point to a valid memory location with length

not smaller than the specified size

 Otherwise, what could happen?

 fd should be a valid file descriptor returned from open()

to perform read operation

 Otherwise, what could happen?

 cnt is the requested number of bytes read, while the

return value is the actual number of bytes read

 How could this happen?

Copyright ©: University of Illinois CS 241 Staff 34

Example (read())

#include <fcntl.h>

main() {

 char *c;

 int fd, sz;

 c = (char *) malloc(100

 * sizeof(char));

 fd = open(“foo.txt",

 O_RDONLY);

 if (fd < 0) {

 perror("r1");

 exit(1);

 }

 sz = read(fd, c, 10);

 printf("called

 read(%d, c, 10).

 returned that %d

 bytes were

 read.\n", fd, sz);

 c[sz] = '\0';

 printf("Those bytes

 are as follows:

 %s\n", c);

 close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 35

File: Write

#include <fcntl.h>

size_t write (int fd, void* buf, size_t cnt);

 Write data from file descriptor into buffer

 Writes the bytes stored in buf to the file specified by fd

 Return: How many bytes were actually written

 Number of bytes written on success

 0 on reaching end of file

 -1 on error, sets errno

 -1 on signal interrupt, sets errno to EINTR

 Parameters:

 fd: file descriptor

 buf: buffer to write data to

 cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 36

File: Write

size_t write (int fd, void* buf, size_t cnt);

 Things to be careful about

 The file needs to be opened for write operations

 buf needs to be at least as long as specified by

cnt

 If not, what will happen?

 cnt is the requested number of bytes to write,

while the return value is the actual number of

bytes written

 How could this happen?

Copyright ©: University of Illinois CS 241 Staff 37

Example (write())

#include <fcntl.h>

main()

{

 int fd, sz;

 fd = open("out3",

 O_RDWR | O_CREAT |

 O_APPEND, 0644);

 if (fd < 0) {

 perror("r1");

 exit(1);

 }

 sz = write(fd, "cs241\n",

 strlen("cs241\n"));

 printf("called write(%d,

 \"cs360\\n\", %d).

 it returned %d\n",

 fd, strlen("cs360\n"),

 sz);

 close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 38

File Pointers

 All open files have a "file pointer" associated

with them to record the current position for

the next file operation

 On open

 File pointer points to the beginning of the file

 After reading/write m bytes

 File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff 39

File: Seek

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

 Explicitly set the file offset for the open file

 Return: Where the file pointer is
 the new offset, in bytes, from the beginning of the file

 -1 on error, sets errno, file pointer remains unchanged

 Parameters:
 fd: file descriptor

 offset: indicates relative or absolute location

 whence: How you would like to use lseek
 SEEK_SET, set file pointer to offset bytes from the beginning of the file

 SEEK_CUR, set file pointer to offset bytes from current location

 SEEK_END, set file pointer to offset bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff 40

File: Seek Examples

 Random access

 Jump to any byte in a file

 Move to byte #16
newpos = lseek(fd, 16, SEEK_SET);

 Move forward 4 bytes
newpos = lseek(fd, 4, SEEK_CUR);

 Move to 8 bytes from the end
newpos = lseek(fd, -8, SEEK_END);

Copyright ©: University of Illinois CS 241 Staff 41

Example (lseek())

c = (char *) malloc(100 *

sizeof(char));

fd = open(“foo.txt", O_RDONLY);

if (fd < 0) {

 perror("r1");

 exit(1);

}

sz = read(fd, c, 10);

printf("We have opened in1, and

called read(%d, c, 10).\n",

fd);

c[sz] = '\0';

printf("Those bytes are as

follows: %s\n", c);

i = lseek(fd, 0, SEEK_CUR);

printf("lseek(%d, 0, SEEK_CUR)

returns that the current

offset is %d\n\n", fd, i);

printf("now, we seek to the

beginning of the file and

call read(%d, c, 10)\n",

fd);

lseek(fd, 0, SEEK_SET);

sz = read(fd, c, 10);

c[sz] = '\0';

printf("The read returns the

following bytes: %s\n", c);

…

 Copyright ©: University of Illinois CS 241 Staff 42

Standard Input, Standard

Output and Standard Error

 Every process in Unix has three predefined file descriptors

 File descriptor 0 is standard input (STDIN)

 File descriptor 1 is standard output (STDOUT)

 File descriptor 2 is standard error (STDERR)

 Read from standard input,

 read(0, ...);

 Write to standard output

 write(1, ...);

 Two additional library functions

 printf();

 scanf();

Copyright ©: University of Illinois CS 241 Staff 43

Stream Processing - fgetc()

int fgetc(FILE *stream);

 Read the next character from stream

 Return

 An unsigned char cast to an int

 EOF on end of file

 Error

int getchar(void);

 Read the next character from stdin

int getc(void);

 Similar to , but implemented as a macro, faster and
potentially unsafe

Copyright ©: University of Illinois CS 241 Staff 44

Similar functions for writing:
int fputc(int c, FILE *stream);

int putchar(int c);

int putc(int c, FILE *stream);

Stream Processing - fgets()

char *fgets(char *s, int size, FILE

*stream);

 Read in at most one less than size characters

from stream

 Stores characters in buffer pointed to by s.

 Reading stops after an EOF or a newline.

 If a newline is read, it is stored into the buffer.

 A '\0' is stored after the last character in the buffer.

 Return

 s on success

 NULL on error or on EOF and no characters read

Copyright ©: University of Illinois CS 241 Staff 45

Similar:
int fputs(const char *s, FILE *stream);

Stream Processing

char *gets(char *s);

 Reads a line from stdin

 NOTE: DO NOT USE

 Reading a line that overflows the array pointed to by s

causes undefined results.

 The use of is fgets() recommended

Copyright ©: University of Illinois CS 241 Staff 46

Stream Processing - fputs()

int fputs(const char *s, FILE *stream);

 Write the null-terminated string pointed to by s to

the stream pointed to by stream.

 The terminating null byte is not written

 Return

 Non-neg number on success

 EOF on error

char *puts(char *s);

 Write to stdout

 Appends a newline character

Copyright ©: University of Illinois CS 241 Staff 47

Example: (fgets()- fputs())

#include <stdio.h>

int main() {

 FILE * fp = fopen("test.txt", "r");

 char line[100];

 while(fgets(line, sizeof(line), fp) != NULL)

 fputs(line, stdout);

 fclose(fp);

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 48

Stream Processing - fscanf()

int scanf(const char *format, ...);

 Read from the standard input stream stdin

 Stores read characters in buffer pointed to by s.

 Return

 Number of successfully matched and assigned input items

 EOF on error

int fscanf(FILE *stream, const char *fmt, ...);

 Read from the named input stream

int sscanf(const char *s, const char *fmt, ...);

 Read from the string s

Copyright ©: University of Illinois CS 241 Staff 49

Example: (scanf())

 Input: 56789 56a72

#include <stdio.h>

int main() {

 int i;

 float x;

 char name[50];

 scanf("%2d%f %[0123456789]", &i, &x, name);

}

Copyright ©: University of Illinois CS 241 Staff 50

What are i, x, and name

after the call to
scanf()?

What will a subsequent call to
getchar()return?

Example: stdin

int x;

char st[31];

/* read first line of input */

printf("Enter an integer: ");

scanf("%d", &x);

/* read second line of input */

printf("Enter a line of text: ");

fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 51

What will

this code

really do?

Example: stdin

int x;

char st[31];

/* read first line of input */

printf("Enter an integer: ");

scanf("%d", &x);

/* read second line of input */

printf("Enter a line of text: ");

fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 52

What will

this code

really do?

Input is buffered, but scanf() did not read all of

the first line

Example: stdin

int x;

char st[31];

/* read first line */

printf("Enter an

integer: ");

scanf("%d", &x);

dump_line(stdin);

/* read second line */

printf("Enter a line of

text: ");

fgets(st, 31, stdin);

void dump_line(FILE * fp

) {

 int ch;

 while((ch = fgetc(fp))

 != EOF &&

 ch != '\n')

 /* null body */;

 }

Copyright ©: University of Illinois CS 241 Staff 53

Read and dump all

characters from input
buffer until a '\n'

after scanf()

