
Copyright ©: University of Illinois CS 241 Staff 1

System Calls and I/O

Announcements

 cs241help-su12@cs.illinois.edu

 Was misconfigured on Monday/Tuesday

 If you sent an e-mail to that address, please

resend it.

 Tested, verified, and it’s working now!

 Nightly Autograder

 HW1 Due Tonight (11:59pm, on svn)

Copyright ©: University of Illinois CS 241 Staff 2

Three types of calls…

 Function Call

 Library Function Call

 “Library Function”

 “Library Call”

 System Call

 “syscall”
Copyright ©: University of Illinois CS 241 Staff 3

Three types of calls…

Copyright ©: University of Illinois CS 241 Staff 4

Function Calls

Library Function Calls

System Calls

Three types of calls…

 Function Call

 Library Function Call

 “Library Function”

 “Library Call”

 System Call

 “syscall”
Copyright ©: University of Illinois CS 241 Staff 5

Process

Caller and callee are in the same

Process

 - Same user

 - Same “domain of trust”

Function Call

System Calls versus Function

Calls

Copyright ©: University of Illinois CS 241 Staff 6

fnCall()

System Calls versus Function

Calls

Copyright ©: University of Illinois CS 241 Staff 7

fnCall()

Process

Caller and callee are in the same

Process

 - Same user

 - Same “domain of trust”

Function Call

sysCall()

Process

System Call

OS

- OS is trusted; user is not.

- OS has super-privileges; user does not

- Must take measures to prevent abuse

System Calls

 System Calls

 A request to the operating system to perform some activity

 System calls are expensive

 The system needs to perform many things before

executing a system call

 The computer (hardware) saves its state

 The OS code takes control of the CPU, privileges are

updated.

 The OS examines the call parameters

 The OS performs the requested function

 The OS saves its state (and call results)

 The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff 8

Steps for Making a System

Call (Example: read call)

Copyright ©: University of Illinois CS 241 Staff 9

1 – 3: Push

parameter (in

reverse order)

4 – 5: Library call

(puts syscall # in

CPU register)

6: Switch to kernel

mode (return

address saved on

stack)

7: Find system call

handler

8: Run handler

(index via table of

pointers to

syscall handles)

9: Return to user

mode

10: Return to user

program (via trap)

11: Clean up

count = read(fd, buffer, nbytes);

Five categories of system calls

 Process Control

 fork(): Creates a child process

 exec(): Execute a new process image

 kill(): Terminate/signal a process

 wait(): Wait for a process to complete

 sbrk(): Increase process’ heap size

 …

Copyright ©: University of Illinois CS 241 Staff 10

Five categories of system calls

 File Management

 open(): Opens a file

 close(): Closes a file

 read(): Reads from a file

 write(): Writes to a file

 lseek(): Seek within a file

 …

Copyright ©: University of Illinois CS 241 Staff 11

Five categories of system calls

 Device Management

 mkdir(): Makes a directory

 rmdir(): Removes an empty directory

 link(): Creates a link to a file/directory

 unlink(): Removes the link

 mount(): Mount a device/file system

 unmount(): Removes the mount

 …

Copyright ©: University of Illinois CS 241 Staff 12

Five categories of system calls

 Information Management

 stat(): Get status of a file/directory

 times(): Process running times

 getrusage(): Resource usage

 clock_gettime(): Get system time

 clock_getres(): Clock resolution

 …

Copyright ©: University of Illinois CS 241 Staff 13

Five categories of system calls

 Communication

 pipe(): Communicate b/t two processes

 shmget(): Share memory b/t processes

 mmap(): Maps virtual memory

 socket(): Network socket

 connect(): Connect to a remote server

 accept(): Accept remote connection

 send(): Send network messages

 …

Copyright ©: University of Illinois CS 241 Staff 14

System Call Errors…

 When a system call fails, it sets a

special global variable: errno

Copyright ©: University of Illinois CS 241 Staff 15

Basic Unix Concepts

 Error Model
 Return value

 0 on success

 -1 on failure for functions returning integer values

 NULL on failure for functions returning pointers

 Examples (see errno.h)
#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or directory */

#define ESRCH 3 /* No such process */

#define EINTR 4 /* Interrupted system call */

#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

Copyright ©: University of Illinois CS 241 Staff 16

How do we know what is a

system call?

 2: System Call

 3: Library Call

Copyright ©: University of Illinois CS 241 Staff 17

Five categories of system calls

 Process Control

 File Management

 Device Management

 Information Management

 Communication

Copyright ©: University of Illinois CS 241 Staff 18

File System and I/O Related

System Calls

 A file system

 A means to organize, retrieve, and

update data in persistent storage

 A hierarchical arrangement of directories

 Bookkeeping information (file metadata)

 File length, # bytes, modified timestamp, etc

 Unix file system

 Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff 19

Why does the OS control I/O?

 Safety

 The computer must try to ensure that if a

program has a bug in it, then it doesn't crash or

mess up

 The system

 Other programs that may be running at the same time

or later

 Fairness

 Make sure other programs have a fair use of

device

Copyright ©: University of Illinois CS 241 Staff 20

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char* path, int flags [, int mode]);

 Open (and/or create) a file for reading, writing or both

 Returns:
 Return value  0 : Success - New file descriptor on success

 Return value = -1: Error, check value of errno

 Parameters:

 path: Path to file you want to use
 Absolute paths begin with “/”, relative paths do not

 flags: How you would like to use the file
 O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 21

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char* path, int flags [, int mode]);

 Open (and/or create) a file for reading, writing or both

 Returns:
 Return value  0 : Success - New file descriptor on success

 Return value = -1: Error, check value of errno

 Parameters:

 path: Path to file you want to use
 Absolute paths begin with “/”, relative paths do not

 flags: How you would like to use the file
 O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 22

File Descriptors

 Input/Output – I/O

 Per-process table of I/O channels

 Table entries describe files, sockets, devices, pipes, etc.

 Table entry/index into table called “file descriptor”

 Unifies I/O interface

Copyright ©: University of Illinois CS 241 Staff 23

user space

pipe

file

socket
Per-process file

descriptor

table

kernel
system open file

table

System Calls for I/O

 Three file descriptors are always defined:
 0 := stdout

 1 := stdin

 2 := stderr

Copyright ©: University of Illinois CS 241 Staff 24

System Calls for I/O

 Get information about a file

 int stat(const char* name, struct stat* buf);

 Open (and/or create) a file for reading, writing or both
int open (const char* name, in flags);

 Read data from one buffer to file descriptor
size_t read (int fd, void* buf, size_t cnt);

 Write data from file descriptor into buffer
size_t write (int fd, void* buf, size_t cnt);

 Close a file
int close(int fd);

Copyright ©: University of Illinois CS 241 Staff 25

System Calls for I/O

 They look like regular procedure calls but

are different

 A system call makes a request to the operating

system by trapping into kernel mode

 A procedure call just jumps to a procedure

defined elsewhere in your program

 Some library procedure calls may

themselves make a system call

 e.g., fopen() calls open()

Copyright ©: University of Illinois CS 241 Staff 26

POSIX I/O vs. C I/O

 open()

 read()

 write()

 lseek()

 close()

Copyright ©: University of Illinois CS 241 Staff 27

 fopen()

 fread()

 scanf()

 fgetc()

 fwrite()

 fprintf()

 fseek()

 fclose()

POSIX I/O vs. C I/O

 open()

 read()

 write()

 lseek()

 close()

Copyright ©: University of Illinois CS 241 Staff 28

 fopen()

 fread()

 scanf()

 fgetc()

 fwrite()

 fprintf()

 fseek()

 fclose()

POSIX I/O:

- More powerful functionally

- Only runs on POSIX systems

C I/O:

- General functionality

- Works on Windows/Linux/etc

- On Linux, calls POSIX I/O

File: Statistics

#include <sys/stat.h>

int stat(const char* name, struct stat* buf);

 Get information about a file

 Returns:
 0 on success

 -1 on error, sets errno

 Parameters:
 name: Path to file you want to use

 Absolute paths begin with “/”, relative paths do not

 buf: Statistics structure
 off_t st_size: Size in bytes

 time_t st_mtime: Date of last modification. Seconds since January 1,
1970

 Also
int fstat(int filedes, struct stat *buf);

Copyright ©: University of Illinois CS 241 Staff 29

File: Close

#include <fcntl.h>

int close(int fd);

 Close a file

 Tells the operating system you are done with a file

descriptor

 Return:

 0 on success

 -1 on error, sets errno

 Parameters:

 fd: file descriptor

Copyright ©: University of Illinois CS 241 Staff 30

Example (close())

#include <fcntl.h>

main(){

 int fd1;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

 perror("c1");

 exit(1);

 }

 if (close(fd1) < 0) {

 perror("c1");

 exit(1);

 }

 printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 31

Example (close())

#include <fcntl.h>

main(){

 int fd1;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

 perror("c1");

 exit(1);

 }

 if (close(fd1) < 0) {

 perror("c1");

 exit(1);

 }

 printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 32

After close, can you still use the

file descriptor?

Why do we need to close a file?

File: Read

#include <fcntl.h>

size_t read (int fd, void* buf, size_t cnt);

 Read data from one buffer to file descriptor
 Read size bytes from the file specified by fd into the memory location

pointed to by buf

 Return: How many bytes were actually read

 Number of bytes read on success

 0 on reaching end of file

 -1 on error, sets errno

 -1 on signal interrupt, sets errno to EINTR

 Parameters:

 fd: file descriptor

 buf: buffer to read data from

 cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 33

File: Read

size_t read (int fd, void* buf, size_t cnt);

 Things to be careful about

 buf needs to point to a valid memory location with length

not smaller than the specified size

 Otherwise, what could happen?

 fd should be a valid file descriptor returned from open()

to perform read operation

 Otherwise, what could happen?

 cnt is the requested number of bytes read, while the

return value is the actual number of bytes read

 How could this happen?

Copyright ©: University of Illinois CS 241 Staff 34

Example (read())

#include <fcntl.h>

main() {

 char *c;

 int fd, sz;

 c = (char *) malloc(100

 * sizeof(char));

 fd = open(“foo.txt",

 O_RDONLY);

 if (fd < 0) {

 perror("r1");

 exit(1);

 }

 sz = read(fd, c, 10);

 printf("called

 read(%d, c, 10).

 returned that %d

 bytes were

 read.\n", fd, sz);

 c[sz] = '\0';

 printf("Those bytes

 are as follows:

 %s\n", c);

 close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 35

File: Write

#include <fcntl.h>

size_t write (int fd, void* buf, size_t cnt);

 Write data from file descriptor into buffer

 Writes the bytes stored in buf to the file specified by fd

 Return: How many bytes were actually written

 Number of bytes written on success

 0 on reaching end of file

 -1 on error, sets errno

 -1 on signal interrupt, sets errno to EINTR

 Parameters:

 fd: file descriptor

 buf: buffer to write data to

 cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 36

File: Write

size_t write (int fd, void* buf, size_t cnt);

 Things to be careful about

 The file needs to be opened for write operations

 buf needs to be at least as long as specified by

cnt

 If not, what will happen?

 cnt is the requested number of bytes to write,

while the return value is the actual number of

bytes written

 How could this happen?

Copyright ©: University of Illinois CS 241 Staff 37

Example (write())

#include <fcntl.h>

main()

{

 int fd, sz;

 fd = open("out3",

 O_RDWR | O_CREAT |

 O_APPEND, 0644);

 if (fd < 0) {

 perror("r1");

 exit(1);

 }

 sz = write(fd, "cs241\n",

 strlen("cs241\n"));

 printf("called write(%d,

 \"cs360\\n\", %d).

 it returned %d\n",

 fd, strlen("cs360\n"),

 sz);

 close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 38

File Pointers

 All open files have a "file pointer" associated

with them to record the current position for

the next file operation

 On open

 File pointer points to the beginning of the file

 After reading/write m bytes

 File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff 39

File: Seek

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

 Explicitly set the file offset for the open file

 Return: Where the file pointer is
 the new offset, in bytes, from the beginning of the file

 -1 on error, sets errno, file pointer remains unchanged

 Parameters:
 fd: file descriptor

 offset: indicates relative or absolute location

 whence: How you would like to use lseek
 SEEK_SET, set file pointer to offset bytes from the beginning of the file

 SEEK_CUR, set file pointer to offset bytes from current location

 SEEK_END, set file pointer to offset bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff 40

File: Seek Examples

 Random access

 Jump to any byte in a file

 Move to byte #16
newpos = lseek(fd, 16, SEEK_SET);

 Move forward 4 bytes
newpos = lseek(fd, 4, SEEK_CUR);

 Move to 8 bytes from the end
newpos = lseek(fd, -8, SEEK_END);

Copyright ©: University of Illinois CS 241 Staff 41

Example (lseek())

c = (char *) malloc(100 *

sizeof(char));

fd = open(“foo.txt", O_RDONLY);

if (fd < 0) {

 perror("r1");

 exit(1);

}

sz = read(fd, c, 10);

printf("We have opened in1, and

called read(%d, c, 10).\n",

fd);

c[sz] = '\0';

printf("Those bytes are as

follows: %s\n", c);

i = lseek(fd, 0, SEEK_CUR);

printf("lseek(%d, 0, SEEK_CUR)

returns that the current

offset is %d\n\n", fd, i);

printf("now, we seek to the

beginning of the file and

call read(%d, c, 10)\n",

fd);

lseek(fd, 0, SEEK_SET);

sz = read(fd, c, 10);

c[sz] = '\0';

printf("The read returns the

following bytes: %s\n", c);

…

 Copyright ©: University of Illinois CS 241 Staff 42

Standard Input, Standard

Output and Standard Error

 Every process in Unix has three predefined file descriptors

 File descriptor 0 is standard input (STDIN)

 File descriptor 1 is standard output (STDOUT)

 File descriptor 2 is standard error (STDERR)

 Read from standard input,

 read(0, ...);

 Write to standard output

 write(1, ...);

 Two additional library functions

 printf();

 scanf();

Copyright ©: University of Illinois CS 241 Staff 43

Stream Processing - fgetc()

int fgetc(FILE *stream);

 Read the next character from stream

 Return

 An unsigned char cast to an int

 EOF on end of file

 Error

int getchar(void);

 Read the next character from stdin

int getc(void);

 Similar to , but implemented as a macro, faster and
potentially unsafe

Copyright ©: University of Illinois CS 241 Staff 44

Similar functions for writing:
int fputc(int c, FILE *stream);

int putchar(int c);

int putc(int c, FILE *stream);

Stream Processing - fgets()

char *fgets(char *s, int size, FILE

*stream);

 Read in at most one less than size characters

from stream

 Stores characters in buffer pointed to by s.

 Reading stops after an EOF or a newline.

 If a newline is read, it is stored into the buffer.

 A '\0' is stored after the last character in the buffer.

 Return

 s on success

 NULL on error or on EOF and no characters read

Copyright ©: University of Illinois CS 241 Staff 45

Similar:
int fputs(const char *s, FILE *stream);

Stream Processing

char *gets(char *s);

 Reads a line from stdin

 NOTE: DO NOT USE

 Reading a line that overflows the array pointed to by s

causes undefined results.

 The use of is fgets() recommended

Copyright ©: University of Illinois CS 241 Staff 46

Stream Processing - fputs()

int fputs(const char *s, FILE *stream);

 Write the null-terminated string pointed to by s to

the stream pointed to by stream.

 The terminating null byte is not written

 Return

 Non-neg number on success

 EOF on error

char *puts(char *s);

 Write to stdout

 Appends a newline character

Copyright ©: University of Illinois CS 241 Staff 47

Example: (fgets()- fputs())

#include <stdio.h>

int main() {

 FILE * fp = fopen("test.txt", "r");

 char line[100];

 while(fgets(line, sizeof(line), fp) != NULL)

 fputs(line, stdout);

 fclose(fp);

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 48

Stream Processing - fscanf()

int scanf(const char *format, ...);

 Read from the standard input stream stdin

 Stores read characters in buffer pointed to by s.

 Return

 Number of successfully matched and assigned input items

 EOF on error

int fscanf(FILE *stream, const char *fmt, ...);

 Read from the named input stream

int sscanf(const char *s, const char *fmt, ...);

 Read from the string s

Copyright ©: University of Illinois CS 241 Staff 49

Example: (scanf())

 Input: 56789 56a72

#include <stdio.h>

int main() {

 int i;

 float x;

 char name[50];

 scanf("%2d%f %[0123456789]", &i, &x, name);

}

Copyright ©: University of Illinois CS 241 Staff 50

What are i, x, and name

after the call to
scanf()?

What will a subsequent call to
getchar()return?

Example: stdin

int x;

char st[31];

/* read first line of input */

printf("Enter an integer: ");

scanf("%d", &x);

/* read second line of input */

printf("Enter a line of text: ");

fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 51

What will

this code

really do?

Example: stdin

int x;

char st[31];

/* read first line of input */

printf("Enter an integer: ");

scanf("%d", &x);

/* read second line of input */

printf("Enter a line of text: ");

fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 52

What will

this code

really do?

Input is buffered, but scanf() did not read all of

the first line

Example: stdin

int x;

char st[31];

/* read first line */

printf("Enter an

integer: ");

scanf("%d", &x);

dump_line(stdin);

/* read second line */

printf("Enter a line of

text: ");

fgets(st, 31, stdin);

void dump_line(FILE * fp

) {

 int ch;

 while((ch = fgetc(fp))

 != EOF &&

 ch != '\n')

 /* null body */;

 }

Copyright ©: University of Illinois CS 241 Staff 53

Read and dump all

characters from input
buffer until a '\n'

after scanf()

