[System Calls and I/0O

Announcements

cs241help-sul2@cs.illinois.edu
o Was misconfigured on Monday/Tuesday

o If you sent an e-mail to that address, please
resend it.

o Tested, verified, and it's working now!

Nightly Autograder

HW1 Due Tonight (11:59pm, on svn)

Copyright ©: University of Illinois CS 241 Staff

[Three types of calls...

Function Call

Library Function Call
o “Library Function”
o “Library Call”

System Call
o “syscall”

Copyright ©: University of Illinois CS 241 Staff

[Three types of calls...]

Function Calls

Copyright ©: University of Illinois CS 241 Staff

[Three types of calls...

Function Call

Library Function Call
o “Library Function”
o “Library Call”

System Call
o “syscall”

Copyright ©: University of Illinois CS 241 Staff

System Calls versus Function
Calls

Function Call

Process

fnCall ()

Caller and callee are in the same
Process

- Same user

- Same “domain of trust”

Copyright ©: University of Illinois CS 241 Staff

System Calls versus Function

Calls

Function Call System Call
Process Process
fnCall () sysCall ()
oS

Caller and callee are in the same
Process

- Same user - OS is trusted; user is not.

- Same “domain of trust” - OS has super-privileges; user does not

- Must take measures to prevent abuse

Copyright ©: University of Illinois CS 241 Staff

7

System Calls

System Calls
o Arequest to the operating system to perform some activity

System calls are expensive
o The system needs to perform many things before
executing a system call
The computer (hardware) saves its state

The OS code takes control of the CPU, privileges are
updated.

The OS examines the call parameters

The OS performs the requested function

The OS saves its state (and call results)

The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff

Steps for Making a System
Call (Example: read call)

count
Address

OXFFFFFFFF _

6: Switch to kernel

Return to caller

mode (return '
address saved on
stack)

4 - 5: Library Ca” User space

)

Trap to the kernel

5] Put code for read in register

10,

Increment SP

11

(puts syscall #in |

CPU regqister) :

+ Call read

Push fd

1 — 3: Push
parameter (in
reverse order)

Kernel space
(Operating system)

AL

or

21 Push &buffer

1| Push nbytes

o

7: Find system call
|'| handler

read (fd, buffer, nbytes);

9: Return to user

] mode
Library
procedure

read
1ﬂ'l Return to user

program (via trap)

1 11: Clean up

User program
calling read

A%

Dispatch

7

8

Sys call
handler

8: Run handler
— (index via table of
pointers to

syscall handles)

[Five categories of system calls

Process Control

fork (): Creates a child process

exec () . Execute a new process image
kill (): Terminate/signal a process
wait (): Walit for a process to complete
sbrk () : Increase process’ heap size

O O O O O O

Copyright ©: University of Illinois CS 241 Staff

[Five categories of system calls

File Management

open () : Opens a file
close (): Closes a file
read () : Reads from a file
write (): Writes to a file
lseek () : Seek within a file

O O O O O O

Copyright ©: University of Illinois CS 241 Staff

[Five categories of system calls

Device Management

mkdir (). Makes a directory

rmdir (). Removes an empty directory
link (): Creates a link to a file/directory
unlink (): Removes the link

mount () : Mount a device/file system
unmount () : Removes the mount

O O O O O O O

Copyright ©: University of Illinois CS 241 Staff

[Five categories of system calls

Information Management

stat (): Get status of a file/directory
times () : Process running times
getrusage () : Resource usage
clock gettime (): Get system time
clock getres (): Clock resolution

O O O O O O

Copyright ©: University of Illinois CS 241 Staff

[Five categories of system calls

Communication

pipe (). Communicate b/t two processes
shmget () : Share memory b/t processes
mmap () : Maps virtual memory

socket () : Network socket

connect (). Connect to a remote server
accept () : Accept remote connection
send () : Send network messages

O O O O O O O O

Copyright ©: University of Illinois CS 241 Staff

[System Call Errors...

When a system call fails, It sets a
special global variable: errno

Copyright ©: University of Illinois CS 241 Staff

Basic Unix Concepts

Error Model

o Return value
0 on success
-1 on failure for functions returning integer values
NULL on failure for functions returning pointers

o Examples (see errno.h)
#define EPERM /* Operation not permitted */
#define ENOENT /* No such file or directory */
#define ESRCH
#define EINTR
#define EIO

##define ENXIO

/* No such process */
/* Interrupted system call */
/* I/O error */

/* No such device or address */

o O WIDN R

Copyright ©: University of Illinois CS 241 Staff

How do we know what Is a
system call?

dienet

linux man page
online dictionary
page load time

open(2) - Linux mangpage

open, creat - open and possibly create a file or device

Synopsis

#include <sys/types.h>#include <sys/stat.h>#include «<fcntl.h>
int open{conat char *pathname, int flags):;int open(const char *pathname,
int flags, mode_t mode):int creat({const char *pathname, mode t mode);

Description

Given a pathname for a file, open() returns a file descriptor, a small, nonnegative integer for use in subsequent system calls (read(2), write(2), Iseek(2), fcntl(2), etc_). The file
descriptor returned by a successful call will be the lowest-numbered file descriptor not currently open for the process.

By default, the new file descriptor is set to remain open across an execve(2) (i.e., the FD_CLOEXEC file descriptor flag described in fontl(2) is initially disabled: the O_CLOEXEC
flag, described below, can be used to change this default). The file offset is set to the beginning of the file (see Iseek(2)).

A call to open() creates a new open file description, an entry in the system-wide table of open files. This entry records the file offset and the file status flags (modifiable via the
fentl(2) F_SETFL operation). A file descriptor is a reference to one of these entries; this reference is unaffected if pathname is subsequently removed or modified to refer to a
different file. The new open file description is initially not shared with any other process, but sharing may arise via fork(2).

The argument flags must include one of the following access modes: O_RDONLY, O_WROMNLY, or O_RDWR. These request opening the file read-only, write-only, or readfwrite,
respectively.

In addition, zero or more file creation flags and file status flags can be bitwise-or'd in flags. The file creation flags are O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC. The file
status flags are all of the remaining flags listed below. The distinction between these two groups of flags is that the file status flags can be retrieved and (in some cases) modified
usina fentl(2). The full list of file creation flags and file status flaas is as follows:

2. System Call
3: Library Call

Copyright ©: University of Illinois CS 241 Staff

[Five categories of system calls

Process Control

File Management
Device Management
Information Management
Communication

Copyright ©: University of Illinois CS 241 Staff

File System and I/O Related
[System Calls

A file system

o A means to organize, retrieve, and
update data in persistent storage

o A hierarchical arrangement of directories

o Bookkeeping information (file metadata)
File length, # bytes, modified timestamp, etc

Unix file system
o Root file system starts with “/*

Copyright ©: University of Illinois CS 241 Staff

[Why does the OS control 1/0O?

Safety

o The computer must try to ensure that if a
program has a bug in it, then it doesn't crash or
mess up

The system

Other programs that may be running at the same time
or later

Fairness

o Make sure other programs have a fair use of
device

Copyright ©: University of Illinois CS 241 Staff

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char* path, int flags [, int mode]);

Open (and/or create) a file for reading, writing or both

Returns:

o Return value > 0 : Success - New file descriptor on success
o Return value = -1: Error, check value of errno

Parameters:

o path: Path to file you want to use
Absolute paths begin with “/”, relative paths do not

o flags: How you would like to use the file

O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,
o CREAT: create file if it doesn’t exist, O_EXCL: - prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 21]

File: Open

#include <sys/types.h>

#1nclude <sys/stat.h>

de <fcntl.h>

ronst char* path, int flags [, int mode]);

Open (and/or create) a file for reading, writing or both
m Returns:
o Return value > 0 : Success - New file descrigtor ONn success

0 Return value = -1: Error, check value of errno

u Parameters:
o path: Path to file you want to use
B Absolute paths begin with “/”, relative paths do not

o flags: How you would like to use the file

= O_RDONLY: read only, O WRONLY: write only, O_RDWR: read and write,
o CREAT: create file if it doesn’t exist, O_EXCL: - prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 22]

File Descriptors

Input/Output — I/O

o Per-process table of I/O channels

o Table entries describe files, sockets, devices, pipes, etc.
o Table entry/index into table called “file descriptor”

o Unifies I/O interface

user space kernel :
system open file -
file
/_. table
N __— pipe
Per-process file]
descriptor socket
table P
o

Copyright ©: University of Illinois CS 241 Staff)

[System Calls for I/0

Three file descriptors are always defined:
o 0 := stdout
o 1 := stdin

o 2 := stderr

Copyright ©: University of Illinois CS 241 Staff

System Calls for I/O

Get information about a file
int stat(const char* name, struct stat* buf);

Open (and/or create) a file for reading, writing or both
int open (const char* name, in flags);

Read data from one buffer to file descriptor

size t read (int fd, wvoid* buf, size t cnt);
Write data from file descriptor into buffer

size t write (int £fd, void* buf, size t cnt);

Close a file
int close(int £d);

Copyright ©: University of Illinois CS 241 Staff

System Calls for I/O

They look like regular procedure calls but
are different

o A system call makes a request to the operating
system by trapping into kernel mode

o A procedure call just jumps to a procedure
defined elsewhere in your program

Some library procedure calls may
themselves make a system call
o e.g., fopen() calls open /()

Copyright ©: University of Illinois CS 241 Staff

[POSIX /O vs. C I/O

open () fopen ()
read () fread ()
write () scanf ()
lseek () fgetc()
close () fwrite ()
fprintf ()
fseek ()

fclose ()

Copyright ©: University of Illinois CS 241 Staff

POSIX /O vs. C 1/O

open () fopen ()
read () fread()
write () scanf ()
lseek () fgetc()
. IPRA fwrite ()

POSIX 1/O: C I/O:

- More powerful functionally - General functionality

- Only runs on POSIX systems - Works on Windows/Linux/etc

- On Linux, calls POSIX I/O

Copyright ©: University of Illinois CS 241 Staff

File: Statistics

#include <sys/stat.h>
int stat(const char* name, struct stat* buf);

Get information about a file

Returns:
o 0 on success
o -1 on error, sets errno

Parameters:
O name: Path to file you want to use
Absolute paths begin with “/”, relative paths do not

o buf: Statistics structure
off t st size: Sizein bytes

time t st mtime: Date of last modification. Seconds since January 1,
1970~ -

Also
int fstat(int filedes, struct stat *buf);

Copyright ©: University of Illinois CS 241 Staff

File: Close

#include <fcntl.h>
int close(int £d);

Close a file

o Tells the operating system you are done with a file
descriptor

Return:

o 0 on success
o -1on error, sets errno

Parameters:
o £d: file descriptor

Copyright ©: University of Illinois CS 241 Staff

Example (close ())

#include <fcntl.h>
main () {
int £dl;

if((£d1 = open(“foo.txt", O RDONLY)) < 0) {
perror ("cl") ;
exit (1) ;
}
if |(close (£dl)|< 0) ({
perror ("cl") ;
exit (1) ;

}
printf ("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff

Example (close ())

#include <fcntl.h>
main () {
int £dl;

if((£fdl1 = open(“foo.txt", O RDONLY)) < 0) {

perror ("cl") ;

exit(1l);
} After clos_e, can you still use the
if (close(£dl) < 0) { file descriptor?

perror ("cl") ;

exit (1) ; Why do we need to close a file?

}
printf ("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 32]

File: Read

#include <fcntl.h>
size t read (int fd, void* buf, size t cnt);

Read data from one buffer to file descriptor

o Read size bytes from the file specified by £d into the memory location
pointed to by buf

Return: How many bytes were actually read
o Number of bytes read on success

o 0 onreaching end of file

o -1 on error, sets errno

o -1 on signal interrupt, sets errno to EINTR

Parameters:

o £d: file descriptor

o buf: buffer to read data from
o cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff

File: Read

size t read (int fd, void* buf, size t cnt);

Things to be careful about
o buf needs to point to a valid memory location with length
not smaller than the specified size
Otherwise, what could happen?
o £d should be a valid file descriptor returned from open ()
to perform read operation
Otherwise, what could happen?
o ent is the requested number of bytes read, while the
return value is the actual number of bytes read
How could this happen?

Copyright ©: University of Illinois CS 241 Staff

Example (read ())

#include <fcntl.h>

main() {

char *c;

int £d, sz;

c = (char *) malloc (100

* sizeof (char)) ;

fd = open(“foo.txt",
O_RDONLY) ;
if (fd < 0) {
perror ("rl") ;
exit(1l);

Copyright ©: University of Illinois CS 241 Staff

}

Isz = read(fd, c, 10);

printf ("called
read(%d, c, 10).
returned that %d

bytes were
read.\n", fd, sz);
c[sz] = '\0';

printf ("Those bytes
are as follows:
%$s\n", c);
close (£d) ;

File: Write

#include <fcntl.h>

size t write (int £fd, void* buf, size t cnt);
Write data from file descriptor into buffer
o Writes the bytes stored in buf to the file specified by £d

Return: How many bytes were actually written
o Number of bytes written on success

o 0 onreaching end of file

o -1 on error, sets errno

o -1 on signal interrupt, sets errno to EINTR

Parameters:

o £d: file descriptor

o buf: buffer to write data to
o cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff

File: Write

size t write (int £fd, void* buf, size t cnt);
Things to be careful about

o The file needs to be opened for write operations

o buf needs to be at least as long as specified by
cnt

If not, what will happen?

o ecnt Is the requested number of bytes to write,

while the return value is the actual number of
bytes written

How could this happen?

Copyright ©: University of Illinois CS 241 Staff

Example (write ())

#include <fcntl.h> sz = write(fd, "cs241\n",
main () strlen("cs241\n"));
{
int £d4d, sz; printf ("called write (%d,
\"ecs360\\n\", %d).
fd = open("out3", it returned %d\n",
O RDWR | O CREAT | fd, strlen("cs360\n"),
O _APPEND, 0644); SZz) ;
if (£d < 0) {
perror ("rl") ; close (£fd) ;
exit (1) ; }

Copyright ©: University of Illinois CS 241 Staff

[File Pointers

All open files have a "file pointer" associated
with them to record the current position for
the next file operation

On open
o File pointer points to the beginning of the file

After reading/write m bytes
o File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff

File: Seek

#include <unistd.h>
off t lseek(int fd, off t offset, int whence);

Explicitly set the file offset for the open file

Return: Where the file pointer is
o the new offset, in bytes, from the beginning of the file
o -1on error, sets errno, file pointer remains unchanged

Parameters:
o £d: file descriptor
o offset: indicates relative or absolute location

o whence: How you would like to use 1seek
SEEK_SET, set file pointer to of£set bytes from the beginning of the file
SEEK_CUR, set file pointer to of£set bytes from current location
SEEK_END, set file pointer to of£set bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff

File: Seek Examples

Random access
o Jump to any byte in a file

Move to byte #16

newpos = lseek(fd, 16, SEEK SET);

Move forward 4 bytes
newpos = lseek(fd, 4, SEEK CUR);

Move to 8 bytes from the end
newpos = lseek(fd, -8, SEEK END);

Copyright ©: University of Illinois CS 241 Staff

Example (1seek ())

¢ = (char *) malloc (100 *
sizeof (char)) ;

fd = open(“foo.txt", O RDONLY) ;
if (£d < 0) {

perror ("rl") ;

exit(1l);

sz = read(fd, c, 10);

printf ("We have opened inl, and

called read(%d, c, 10).\n",
f£4) ;

c[sz] = '\0';

printf ("Those bytes are as
follows: %s\n", c);

Copyright ©: University of Illinois CS 241 Staff

i = lseek(fd, 0, SEEK CUR) ;
printf ("lseek(3d, O, §EEK_CU§I

returns that the current
offset is %d\n\n", £d, 1i);

printf ("now, we seek to the
beginning of the file and
call read(%d, c, 10)\n",
fd) ;

lseek (fd, 0, SEEK SET) ;

sz = read(fd, c, 10);

c[sz] = '\0';

printf ("The read returns the
following bytes: %s\n", c);

o 1

Standard Input, Standard
Output and Standard Error

Every process in Unix has three predefined file descriptors
o File descriptor O is standard input (STDIN)

o File descriptor 1 is standard output (STDOUT)

o File descriptor 2 is standard error (STDERR)

Read from standard input,

o read(0, ...);
Write to standard output
o write(l, ...);

Two additional library functions
O printf();
o scanf (),

Copyright ©: University of Illinois CS 241 Staff

Stream Processing - £fgetc ()

int fgetc (FILE *stream);
Read the next character from stream

Return

o Anunsigned char cast to an int

o EOF on end of file Similar functions for writing:

o Error int fputc(int ¢, FILE *stream);

_ _ int putchar(int c);
int getchar (void) ; int putc(int c, FILE *stream);

o Read the next character from stdin
int getc(void) ;

o Similar to , but implemented as a macro, faster and
potentially unsafe

Copyright ©: University of Illinois CS 241 Staff

Stream Processing - £fgets ()

char *fgets(char *s, int size, FILE
*stream) ;

Read in at most one less than size characters
from stream

o Stores characters in buffer pointed to by s.
o Reading stops after an EOF or a newline.

o If anewline is read, it is stored into the buffer.
o A "\O0' is stored after the last character in the buffer.

Return Similar:
] * * .
o6 s ONn success int fputs(const char *s, FILE *stream);

o NULL on error or on EOF and no characters read

Copyright ©: University of Illinois CS 241 Staff 45]

Stream Processing

char *gets(char *s);
Reads a line from stdin
NOTE: DO NOT USE

o Reading a line that overflows the array pointed to by s
causes undefined results.

o The use of is £gets () recommended

Copyright ©: University of Illinois CS 241 Staff

Stream Processing - fputs ()

int fputs(const char *s, FILE *stream) ;
Write the null-terminated string pointed to by s to
the stream pointed to by stream.
o The terminating null byte is not written
Return

o Non-neg number on success
o EOF on error

char *puts(char *s);
Write to stdout
o Appends a newline character

Copyright ©: University of Illinois CS 241 Staff

Example: (Egets () - fputs())

#include <stdio.h>

int main() {
FILE * fp = fopen("test.txt", "r");
char line[100];

while(fgets(line, sizeof(line), fp) != NULL)
fputs(line, stdout);

fclose (fp) ;

return 0;

Copyright ©: University of Illinois CS 241 Staff

Stream Processing - £scanf ()

int scanf (const char *format, ...);
Read from the standard input stream stdin
o Stores read characters in buffer pointed to by s.

Return
o Number of successfully matched and assigned input items
o EOF on error

int fscanf (FILE *stream, const char *fmt, ...),
o Read from the named input stream
int sscanf (const char *s, const char *fmt, ...),

o Read from the string s

Copyright ©: University of Illinois CS 241 Staff

Example: (scanf ())

Input: 56789 56a72

] lude <stdio.h> .
#include <stdio What are i, x, and name
int main() {

int i; after the call to
float x; scanf () ?

char name[50];
scanf ("%2d%f $[0123456789]", &i, &x, name);

What will a subsequent call to
getchar () return?

Copyright ©: University of Illinois CS 241 Staff

Example: stdin

int x;
char st[31];

/* read first line of input */
printf ("Enter an integer: ");

scanf ("%d", &x):
/* read second line of input */

printf ("Enter a line of text: ");
fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff

What will
this code
really do?

Example: stdin

int x;

char st[31]; What will
this code
/* read first line of input */ rea”y do?

printf ("Enter an integer: ") ;
scanf ("%d", &x):

/* read second line of input */
printf ("Enter a line of text: ");
fgets(st, 31, stdin);
Input is buffered, but scanf () did not read all of
the first line

Copyright ©: University of Illinois CS 241 Staff

Example: stdin

int x;
char st[31];
/* read first line */

printf ("Enter an
integer: ") ;

&x) ;
dump line (stdin);

scanf ("%d",

/* read second line */

printf ("Enter a line of
text: "),

fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff

void dump line(FILE * fp
) |

int ch;

while ((ch = fgetc(£fp))
1= EOF &&
ch '= '"\n')

/* null body */;
}

Read and dump all

characters from input
buffer untila '\n"

after scanf ()

53

