C Survival Guide

Copyright ©: University of Illinois CS 241 Staff

[y - |

s It's 2012.

= Why are we programming in C?

o Why not C++? Java? C#?
Perl? PHP? Python? Ruby?

Copyright ©: University of Illinois CS 241 Staff

[Why C?

1) C gives you better control of what's
going on.

C++ Code:

MyODbiject obj;
MyODbiject *ptr = new MyODbject;

Copyright ©: University of Illinois CS 241 Staff

[Why C?

1) C gives you better control of what's
going on.

C++ Code:

MyODbiject obj;
MyObject *ptr = new MyObject;

Both implicitly invokes MyObject::MyObject()

Copyright ©: University of Illinois CS 241 Staff

[Why C?

= 2) C requires much less runtime
support.

o C++ contains a large number of libraries,
simpler language constructs

o Makes it more suitable for low-level
environments

» Kernels, embedded devices, OS drivers

Copyright ©: University of Illinois CS 241 Staff

[y - |

= The Android, 10S, and Linux kernels
are all programmed in C.

o Want to jailbreak your iPhone...?

Copyright ©: University of Illinois CS 241 Staff

Exploit Code

int ret, fd; struct vn_ioctl vn; struct hfs_mount_args args;

fd = open("/dev/vn@", O_RDONLY, 0);

if (fd < 90) {
puts("Can't open /dev/vn@ special file.");
ex1t(l);

}

memset(&vn, 0, sizeof(vn));
1octl(fd, VNIOCDETACH, &vn);
vh.vn_file = "/usr/lib/exploit.hfs";
vn.vn_control = vncontrol_readwrite_io_e;
ret = ioctl(fd, VNIOCATTACH, &vn);
close(fd);
1f (ret < @) {

puts("Can't attach vne.");

ex1t(l);
}

memset(&args, @, sizeof(args));

args.fspec = "/dev/vno";

args.hfs_uid = args.hfs_gid = 99;

args.hfs_mask = @x1c5;

ret = mount("hfs", "/mnt/", MNT_RDONLY, &args);

Source: Stefan Esser, iOS Kernel Exploitation, August 2011, Black Hat Security Conference

C vs. Java: Design Goals

= Java design goals

O O O O O

Support object-oriented programming

Allow same program to run on multiple operating systems
Support using computer networks

Execute code from remote sources securely

Adopt the good parts of other languages

= Implications for Java

O

O
O
O

Good for application-level programming

High-level (insulates from assembly language, hardware)
Portability over efficiency

Security over efficiency

Copyright ©: University of Illinois CS 241 Staff

C vs. Java: Design Goals

C design goals

o Support structured programming

o Support development of the Unix OS and Unix tools
= As Unix became popular, so did C

Implications for C

o Good for systems-level programming

o Low-level

o Efficiency over portability

o Efficiency over security

Anything you can do in Java you can do in C — it
just might look ugly in C!

Copyright ©: University of Illinois CS 241 Staff

C vs. C++

m C++is “C with Classes”
o C enhanced with objects

= C has some shortcomings compared to C++

o C++ has objects, a bigger standard library (e.g., STL),
parameterized types, etc.

o C++is a little bit more strongly typed

= Programming Challenge
o All syntax you use in this class is valid for C++
o Not all C++ syntax you've used, however, is valid for C

Copyright ©: University of Illinois CS 241 Staff 10]

Compiler

m gcc
o Preprocessor
o Compiler
o Linker
o See manual “man” for options: man gcc

= "Ansi-C" standards C89 versus C99

o C99: Mix variable declarations and code (for int i=...)
o C++inline comments //a comment

= make — a utility to build executables

Copyright ©: University of Illinois CS 241 Staff

[Programming In C]

m C = Variables + Instructions

Copyright ©: University of Illinois CS 241 Staff

[What we'll show vou

You already know a lot of C from C++:
int my fav function(int x) {
return x+1; }
Key concepts for this lecture:

o Pointers h _
o Memory allocation eme.
o Arrays how memory
o Strings really works

Copyright ©: University of Illinois CS 241 Staff

C vs. C++ Programming

= Four key differences in programming:
o C does not have a “string” type
= No string s = “Hello”; s += “World”;
o C does not have “lostream”
= No cout<<“Hello World"<<end];
o C does not have new/delete:
= No int *k = new Iint[4]; delete[] k;
o C does not have classes

Copyright ©: University of Illinois CS 241 Staff

C Strings

m StringsinC

o A string is simply an array of characters that end
in a NULL (0x00, \O’) character.
o Called “C Strings”

o Data type is a char pointer, or char *

o char *s = “Hello World™:
o In memory:

Hlie|ll]|l]|o Wlo|r|l|d]|\O
N

Copyright ©: University of Illinois CS 241 Staff

C Strings

Hliell]|l]|o Wlo|r|l|d]|\O
N

S

m StringsinC
o char *s = “Hello World™:

o s[0]?

Copyright ©: University of Illinois CS 241 Staff

C Strings

Hliell]|l]|o Wlo|r|l|d]|\O
N

S

m StringsinC
o char *s = “Hello World™:

o s[0]?

Copyright ©: University of Illinois CS 241 Staff

C Strings

Hliell]|l]|o Wlo|r|l|d]|\O
N

S

m StringsinC
o char *s = “Hello World™:

o s[4]?

Copyright ©: University of Illinois CS 241 Staff

C Strings

Hliell]|l]|o Wlo|r|l|d]|\O
N

S

m StringsinC
o char *s = “Hello World™:

o s[4]?

Copyright ©: University of Illinois CS 241 Staff

C Strings

Hliell]|l]|o Wlo|r|l|d]|\O
N

S

m StringsinC
o char *s = “Hello World™:

o s=s+"Hill"?

Copyright ©: University of Illinois CS 241 Staff

C Strings

Hliell]|l]|o Wlo|r|l|d]|\O

S —
m StringsinC
o char *s = “Hello World™:

o s=s+"Hill"?

Copyright ©: University of Illinois CS 241 Staff

[C Strings]

= You can manipulate C Strings via
library functions:
o strcpy(): Copy a string
o strcmp(): Compare two strings
o strcat(): Concatenate two strings

o But you have to have enough memory
to do it!

Copyright ©: University of Illinois CS 241 Staff 22]

A Few Differences between C
and C++

= |nput/Output
o C++: cout<<"hello world"“<<endl;
o C:printf("hello world\n");

= Heap memory allocation
o C++. new/delete

m int *x = new int[8],; delete[] x;

o C:malloc()/free ()

m int *x = malloc (8 * sizeof(int));
free (x) ;

Copyright ©: University of Illinois CS 241 Staff

Copyright ©: University of Illinois CS 241 Staff

Variables

int X,
double Y
float Z;
double* P’
int d;

Copyright ©: University of Illinois CS 241 Staff

Variables

Name
10,000 Type of each variable
B / valuel (also determines size)
10,002
/ y int X
1 ;
Memory Value2 \ double Yy
Address value float z,
10,008 double* ©p;
e Value3 : .
10,010 int d;
P Value4
10,012
d Value5

Copyright ©: University of Illinois CS 241 Staff

The “&” Operator:
Reads “Address of”

Name
10,000
& y
y \ ® Valuel
10,002
Y
Value2
\Value
10,008
Z Value3
10,010
P Value4
10,012
d Value5

Copyright ©: University of Illinois CS 241 Staff

Pointers

Name : : :
A pointer is a variable

10,000 _— whose value is the
aiue address of another
10,002
y
Value?2
‘--“-VMUe
10,008
Z Value3
10,010
P 10,002
10,012
d Valueb

Copyright ©: University of Illinois CS 241 Staff

The ™" Operator
Reads “Variable pointed to by”

10,000

10,002

10,008
10,010

10,012

Name

A pointer is a variable

Valuel

whose value is the
address of another

Value2

‘--"‘-VMUe

Value3

10,002

Value5

Copyright ©: University of Illinois CS 241 Staff

[What IS the Output?

main () {
int *p, q, x;
x=10;
p=&x;
*p=x+1;
Q=X
printf (“Q = %d\n"“, q);

Copyright ©: University of Illinois CS 241 Staff

Cardinal Rule: Must Initialize]
[Pointers before Using them

o
int *P/ _____ GOOD or BAD?
*p = 10;

Copyright ©: University of Illinois CS 241 Staff

Memory allocation

Copyright ©: University of Illinois CS 241 Staff

Memory allocation

= Two ways to dynamically allocate
memory

m Stack

o Named variables in functions
= Allocated for you when you call a function
» Deallocated for you when function returns

= Heap
o Memory on demand

= You are responsible for all allocation and
deallocation

Copyright ©: University of Illinois CS 241 Staff

Allocating and deallocating
heap memory

= Dynamically allocating memory
o Programmer explicitly requests space in memory
o Space is allocated dynamically on the heap
o E.g., using “malloc” in C, “new” in Java

= Dynamically deallocating memory
o Must reclaim or recycle memory that is never used again
o To avoid (eventually) running out of memory

= “Garbage’
o Allocated blocks in heap that will not be used again
o Can be reclaimed for later use by the program

Copyright ©: University of Illinois CS 241 Staff

Option #1: Garbage Collection

Run-time system does garbage collection (Java)
o Automatically determines which objects can’t be accessed
o And then reclaims the resources used by these objects

Object x = new Foo() ; e)
Object y = new BW Object Foo()
X = new Quux() ; | is never

| _ used again!
if (x.check something()) { Y,

x.do_something(y) ;
}

System.exit (0) ;

Challenges of Garbage
Collection

= Detecting the garbage is not always easy

O

O

O

long char z = x ;
X = new Quux();

Run-time system cannot collect all the garbage

= Detecting the garbage introduces overhead

O

O

O

Keeping track of references to object (e.g., counters)
Scanning through accessible objects to identify garbage
Sometimes walking through a large amount of memory

= Cleaning the garbage leads to bursty delays

O

O

O

E.g., periodic scans of the objects to hunt for garbage
Leads to unpredictable “freezes” of the running program

Very problematic for real-time applications
= ... though good run-time systems avoid long freezes

Option #2: Manual
Deallocation

= Programmer deallocates the memory (C and C++)
o Manually determines which objects can’t be accessed
o And then explicitly returns those resources to the heap
o E.g., using “free” in C or “delete” in C++

= Advantages
o Lower overhead
o No unexpected “pauses”
o More efficient use of memory

= Disadvantages
o More complex for the programmer
o Subtle memory-related bugs
o Can lead to security vulnerabilities in code

Manual deallocation can lead
to bugs

= Dangling pointers
o Programmer frees a region of memory
o ... but still has a pointer to it
o Dereferencing pointer reads or writes nonsense values

int main(void) {
char *p; ~
p = malloc(10);

May print
nonsense

Z character
printf (“%c\n”, *p) ; -\ /
} 2 M

free (p) ;

Manual deallocation can lead
to bugs

= Memory leak
o Programmer neglects to free unused region of memory
o So, the space can never be allocated again
o Eventually may consume all of the available memory

void £ (void) {
char *s;

s = malloc (50) ;\ /Eventually, A
} malloc()
returns
int main (void) { NULL

while (1) £();

} N 1

Manual deallocation can lead
to bugs

Double free

o Programmer mistakenly frees a region more than once
o Leading to corruption of the heap data structure

o ... or premature destruction of a different object

int main(void) {
char *p, *q;
p = malloc(10); Might free

space

free (p) allocated by
q = mal% q!
free (p) -\ /

} o

[Heap memory allocation

C++;

o new and delete allocate memory for a
whole object

O

malloc and free deal with unstructured
blocks of bytes

void* malloc(size t size);
void free (void* ptr);

Copyright ©: University of Illinois CS 241 Staff

[Example]

int* p;
P = (int*) malloc(sizeof (int));
*p =

How many bytes
free (p)\/

do you want?

Cast to the
right type

Copyright ©: University of Illinois CS 241 Staff

[I’m hungry. More bytes plz.

int* p = (int*) malloc (10 * sizeof(int));

Now | have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

Copyright ©: University of Illinois CS 241 Staff

Arrays

= Contiguous block of memory
o Fits one or more elements of some type

= Two ways to allocate Is there a
o named variable difference?
int x[10];
o dynamic One Is on the
int* x = (int*) stack, one Is on
malloc(10*sizeof (int)) ; the heap

Copyright ©: University of Illinois CS 241 Staff 58]

Arrays

int p[5];
/‘ .
=~
Name of array (is a pointer) 3;;
/////'rﬂﬂ
Shorthand: Pie]

*(pt+l) is called p[1l]
*(pt2) is called p[2]
etc..

Copyright ©: University of Illinois CS 241 Staff

[Example

int y[4];

y[1]=6; v
v[2]=2; ~4~TE$

y[1] G
y[2] 2
y[3]

Copyright ©: University of Illinois CS 241 Staff

[Array Name as Pointer

What's the difference between the examples?

Example 1: Example 2:
int z[8]; int z[8];
int *q; int *q;

q=&z[0];

9=z,

Copyright ©: University of Illinois CS 241 Staff

[Questions

What'’s the difference between
int* q;
int gq[5];

What's wrong with
int ptr[2];
ptr[l] = 1;
ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff

Questions

What is the value of b[2] at the end?

int b[3]; E
int* q;

b[0]=48; b[1]=113; b[2]=1;
= o,

*(q+l)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff

A4

b[0]

b[1]

b[2]

48

113

Copyright ©: University of Illinois CS 241 Staff

69

Strings
(Null-terminated Arrays of Char)

Strings are arrays that contain the
string characters followed by a “Null”
character ‘\o’ to indicate end of string.

o Do not forget to leave room for the null
character

S

Example s[0]

s[1]
s[2]
s[3]
s[4]

O char s[5];

Copyright ©: University of Illinois CS 241 Staff

Conventions

m Strings
o “string”

O \\cII

m Characters
o ‘g
O ‘X!

Copyright ©: University of Illinois CS 241 Staff

[String Operations

strcpy
strlen
strcat

strcmp

Copyright ©: University of Illinois CS 241 Staff

strcpy, strlen

strcpy (ptrl, int len;

ptr2); char str[1l5];

o ptrlandptr2 are strcpy (str, "Hello,
pointers to char world!") ;

value = —

len = strlen(str);
strlen (ptr) ;

o wvalue is an integer

o ptrisa pointerto
char

Copyright ©: University of Illinois CS 241 Staff

[strcpy, strlen

What's wrong with

char str[5];
strcpy (str, "Hello");

Copyright ©: University of Illinois CS 241 Staff

strncpy

strncpy (ptrl,

ptr2, num) ;

o ptrl andptr2 are
pointers to char

o num IS the number of

characters to be
copied

Copyright ©: University of Illinois CS 241 Staff

int len;

char strl[1l5],
str2[15];

strcpy (strl,
"Hello, world!'");

strncpy (str2, stril,
5);

strncpy

strncpy (ptrl, int len;

ptr2, num); char strl[15],

o ptrl andptr2 are str2[15];
pointers to char strepy (strl,

o num IS the number of "Hello, world! n) :
characters to be
copied strncpy (str2, strl,

S);

Caution: strncpy blindly copies the
characters. It does not voluntarily
append the string-terminating null
character.

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Concatenates the two null terminated strings
yielding one string (pointed to by ptrl).

char S[25] = "world!";
char D[25] = "Hello, ";
strcat (D, S);

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Concatenates the two null terminated strings

yielding one string (pointed to by ptrl).

o Find the end of the destination string

o Append the source string to the end of the destination
string

o Add a NULL to new destination string

Copyright ©: University of Illinois CS 241 Staff

[strcat Example

What's wrong with

char S[25] = "world!";
strcat (“Hello, ”, S);

Copyright ©: University of Illinois CS 241 Staff

strcat Example

What's wrong with

char *s = malloc(ll * sizeof(char));
/* Allocate enough memory for an
array of 11 characters, enough
to store a 10-char long string. */

strcat (s, "Hello");
strcat (s, "World") ;

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Compare to Java and C++
s + " World!'";

o string s

What would you get in C?
o Ifyou did char* ptr0 = ptrl+ptr2;

o You would get the sum of two memory locations!

Copyright ©: University of Illinois CS 241 Staff

strcmp

diff = strcmp(ptrl, ptr2);
o diffis an integer
o ptrl and ptr2 are pointers to char

Returns

o zero if strings are identical

o <O0ifptrlislessthan ptr2 (earlier in a dictionary)
o >0ifptrlis greater than ptr2 (later in a dictionary)

int diff;
char s1[25] = "pat";
char s2[25] = "pet";

diff = strcmp(sl, s2);

Copyright ©: University of Illinois CS 241 Staff

[Can we make this work?!

int x;

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff

[Can we make this work?!]

int x;

$

printf ("This class is %s.\n",) ;

Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

(char¥*) &x

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff

[Can we make this work?!

int x;

((char*)&x) [0] = '£';

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff

[Can we make this work?!

int x;

((char*) &x) [0] = '"f';
((char*)&x) [1] = 'u';
((char*) &x) [2] = 'n';

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff

[Can we make this work?!

int x;

((char*)sx) [0] = '£': Perfectly legal
((char*)&x) [1] = 'u'; and perfectly
((char*)&x)[2] = 'n’; horrible!
((char*) &x) [3] = '\0';

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff 88]

[Can we make this work?!

int x;
char* s = &x: Perfectly legal
strepy (s, “fun”) ; and perfectly

horrible!

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff 89]

Other operations

Copyright ©: University of Illinois CS 241 Staff

90

[Increment & decrement]

= x++: yield old value, add one
= ++x: add one, yield new value

int x = 10;
X++;
int y = x++; -

int z = +4+x; -

= --x and x-- are similar (subtract one)

Copyright ©: University of Illinois CS 241 Staff 91]

Math: Increment and
Decrement Operators

Example 1:

int x, vy,
y=10, w=2;
x=++y;

Z=—-W;

z,

Example 2:
W, int x, Y 2, W,
y=10; w=2;
_ . What are x
X=y++; and y at the
Z=W——, end of each

Copyright ©: University of Illinois CS 241 Staff

example?

Math: Increment and Decrement
Operators on Pointers

Example 1:

int a[2];
int numberl, number2, *p;
a[0]=1; a[l1l]=10;

p=a;
numberl =
number2 = *p;

What will numberl and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 94]

Math: Increment and Decrement
Operators on Pointers

Example

int a[2];
int numberl, number2, *p;
af[0]=1l; a[l]=10;

p=a;
numberl = *p++; __—Hint: ++ increments pointer p not
number2 = *p; variable *p

What will numberl and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 95]

Operators

[Logic: Relational (Condition)

equal to

not equal to
greater than
less than
greater than or equal to
less than or equal to

Copyright ©: University of Illinois CS 241 Staff

Copyright ©: University of Illinois CS 241 Staff

98

[Review

int pl;
What does &pl mean?

Copyright ©: University of Illinois CS 241 Staff

[Review

How much is y at the end?
int Y X, *P;
x = 20;

*p = 10;
y = x + *p;

Copyright ©: University of Illinois CS 241 Staff

[Review

What are the differences between x

and y?
char* £() {
char *x;

static char*y;
return y;

}

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

if (Strcmp ("a" , "a"))
printf ("same!") ;

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

int 1 = 4;
int *iptr;
iptr = &1;
*iptr = 5;//now i=5

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

char *p;
p=(char*)malloc(99) ;
strcpy ("Hello",p) ;
printf ("%$s World",p);
free(p) ;

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

char msg[5];
strcpy (msg,'"Hello");

Copyright ©: University of Illinois CS 241 Staff

Operator Description Associativity
0 Parentheses (function call) left-to-right
[Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer
++ -- Postfix increment/decrement
++ -- Prefix increment/decrement right-to-left
+ - Unary plus/minus
I ~ Logical negation/bitwise complement
(type) Cast (change type)
* Dereference
& Address
sizeof Determine size in bytes
* 1 % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to
== I= Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
A Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
[l Logical OR left-to-right
?: Ternary conditional right-to-left
= Assignment right-to-left
+= -= Addition/subtraction assignment
*= = Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
= = Bitwise exclusive/inclusive OR assignment
<<= >>= Bitwise shift left/right assignment
, Comma (separate expressions) left-to-right

