
Copyright ©: University of Illinois CS 241 Staff 1

C Survival Guide

Why C?

 It’s 2012.

 Why are we programming in C?

 Why not C++? Java? C#?

Perl? PHP? Python? Ruby?

Copyright ©: University of Illinois CS 241 Staff 2

Why C?

 1) C gives you better control of what’s

going on.

 C++ Code:

 MyObject obj;

 MyObject *ptr = new MyObject;

Copyright ©: University of Illinois CS 241 Staff 3

Why C?

 1) C gives you better control of what’s

going on.

 C++ Code:

 MyObject obj;

 MyObject *ptr = new MyObject;

Copyright ©: University of Illinois CS 241 Staff 4

Both implicitly invokes MyObject::MyObject()

Why C?

 2) C requires much less runtime

support.

 C++ contains a large number of libraries,

simpler language constructs

 Makes it more suitable for low-level

environments

 Kernels, embedded devices, OS drivers

 Copyright ©: University of Illinois CS 241 Staff 5

Why C?

 The Android, iOS, and Linux kernels

are all programmed in C.

 Want to jailbreak your iPhone…?

Copyright ©: University of Illinois CS 241 Staff 6

Why C?

Copyright ©: University of Illinois CS 241 Staff 7
Source: Stefan Esser, iOS Kernel Exploitation, August 2011, Black Hat Security Conference

C vs. Java: Design Goals

 Java design goals

 Support object-oriented programming

 Allow same program to run on multiple operating systems

 Support using computer networks

 Execute code from remote sources securely

 Adopt the good parts of other languages

 Implications for Java

 Good for application-level programming

 High-level (insulates from assembly language, hardware)

 Portability over efficiency

 Security over efficiency

Copyright ©: University of Illinois CS 241 Staff 8

C vs. Java: Design Goals

 C design goals

 Support structured programming

 Support development of the Unix OS and Unix tools

 As Unix became popular, so did C

 Implications for C

 Good for systems-level programming

 Low-level

 Efficiency over portability

 Efficiency over security

 Anything you can do in Java you can do in C – it

just might look ugly in C!

Copyright ©: University of Illinois CS 241 Staff 9

C vs. C++

 C++ is “C with Classes”

 C enhanced with objects

 C has some shortcomings compared to C++

 C++ has objects, a bigger standard library (e.g., STL),

parameterized types, etc.

 C++ is a little bit more strongly typed

 Programming Challenge

 All syntax you use in this class is valid for C++

 Not all C++ syntax you’ve used, however, is valid for C

10 Copyright ©: University of Illinois CS 241 Staff

Compiler

 gcc

 Preprocessor

 Compiler

 Linker

 See manual “man” for options: man gcc

 "Ansi-C" standards C89 versus C99

 C99: Mix variable declarations and code (for int i=…)

 C++ inline comments //a comment

 make – a utility to build executables

11 Copyright ©: University of Illinois CS 241 Staff

Programming in C

 C = Variables + Instructions

12 Copyright ©: University of Illinois CS 241 Staff

What we’ll show you

 You already know a lot of C from C++:

int my_fav_function(int x) {

 return x+1; }

 Key concepts for this lecture:

 Pointers

 Memory allocation

 Arrays

 Strings

Theme:

how memory

really works

13 Copyright ©: University of Illinois CS 241 Staff

C vs. C++ Programming

 Four key differences in programming:

 C does not have a “string” type

 No string s = “Hello”; s += “World”;

 C does not have “iostream”

 No cout<<“Hello World”<<endl;

 C does not have new/delete:

 No int *k = new int[4]; delete[] k;

 C does not have classes

Copyright ©: University of Illinois CS 241 Staff 14

C Strings

 Strings in C

 A string is simply an array of characters that end

in a NULL (0x00, ‘\0’) character.

 Called “C Strings”

 Data type is a char pointer, or char *

 char *s = “Hello World”;

 In memory:

15 Copyright ©: University of Illinois CS 241 Staff

H e l l o W o r l d \0

s

C Strings

 Strings in C

 char *s = “Hello World”;

 s[0] ?

16 Copyright ©: University of Illinois CS 241 Staff

H e l l o W o r l d \0

s

C Strings

 Strings in C

 char *s = “Hello World”;

 s[0] ?

17 Copyright ©: University of Illinois CS 241 Staff

H e l l o W o r l d \0

s

C Strings

 Strings in C

 char *s = “Hello World”;

 s[4] ?

18 Copyright ©: University of Illinois CS 241 Staff

H e l l o W o r l d \0

s

C Strings

 Strings in C

 char *s = “Hello World”;

 s[4] ?

19 Copyright ©: University of Illinois CS 241 Staff

H e l l o W o r l d \0

s

C Strings

 Strings in C

 char *s = “Hello World”;

 s = s + “Hi!!” ?

20 Copyright ©: University of Illinois CS 241 Staff

H e l l o W o r l d \0

s

C Strings

 Strings in C

 char *s = “Hello World”;

 s = s + “Hi!!” ?

21 Copyright ©: University of Illinois CS 241 Staff

H e l l o W o r l d \0

s

C Strings

 You can manipulate C Strings via

library functions:

 strcpy(): Copy a string

 strcmp(): Compare two strings

 strcat(): Concatenate two strings

 But you have to have enough memory

to do it!

Copyright ©: University of Illinois CS 241 Staff 22

A Few Differences between C

and C++

 Input/Output

 C++: cout<<"hello world“<<endl;

 C: printf("hello world\n“);

 Heap memory allocation

 C++: new/delete

 int *x = new int[8]; delete[] x;

 C: malloc()/free()

 int *x = malloc(8 * sizeof(int));

free(x);

23 Copyright ©: University of Illinois CS 241 Staff

Pointers

Copyright ©: University of Illinois CS 241 Staff 31

Variables

int x;

double y;

float z;

double* p;

int d;

32 Copyright ©: University of Illinois CS 241 Staff

Variables

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Memory

Address

Name

Value

int x;

double y;

float z;

double* p;

int d;

Type of each variable

(also determines size)

33 Copyright ©: University of Illinois CS 241 Staff

The “&” Operator:

Reads “Address of”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Name

Value

&y

34 Copyright ©: University of Illinois CS 241 Staff

Pointers

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable

whose value is the

address of another

Copyright ©: University of Illinois CS 241 Staff 35

The “*” Operator

Reads “Variable pointed to by”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable

whose value is the

address of another

*p

Copyright ©: University of Illinois CS 241 Staff 36

What is the Output?

main() {

 int *p, q, x;

 x=10;

 p=&x;

 *p=x+1;

 q=x;

 printf (“Q = %d\n“, q);

}

Copyright ©: University of Illinois CS 241 Staff 37

Cardinal Rule: Must Initialize

Pointers before Using them

int *p;

*p = 10;
GOOD or BAD?

Copyright ©: University of Illinois CS 241 Staff 43

Memory allocation

Copyright ©: University of Illinois CS 241 Staff 46

Memory allocation

 Two ways to dynamically allocate
memory

 Stack
 Named variables in functions

 Allocated for you when you call a function

 Deallocated for you when function returns

 Heap
 Memory on demand

 You are responsible for all allocation and
deallocation

Copyright ©: University of Illinois CS 241 Staff 47

Allocating and deallocating

heap memory

 Dynamically allocating memory

 Programmer explicitly requests space in memory

 Space is allocated dynamically on the heap

 E.g., using “malloc” in C, “new” in Java

 Dynamically deallocating memory

 Must reclaim or recycle memory that is never used again

 To avoid (eventually) running out of memory

 “Garbage”

 Allocated blocks in heap that will not be used again

 Can be reclaimed for later use by the program

Copyright ©: University of Illinois CS 241 Staff 48

Option #1: Garbage Collection

 Run-time system does garbage collection (Java)

 Automatically determines which objects can’t be accessed

 And then reclaims the resources used by these objects

Copyright ©: University of Illinois CS 241 Staff 49

Object x = new Foo() ;

Object y = new Bar() ;

x = new Quux() ;

if (x.check_something()) {

 x.do_something(y) ;

}

System.exit(0) ;

Object Foo()

is never

used again!

Challenges of Garbage

Collection
 Detecting the garbage is not always easy

 long char z = x ;

 x = new Quux();

 Run-time system cannot collect all the garbage

 Detecting the garbage introduces overhead

 Keeping track of references to object (e.g., counters)

 Scanning through accessible objects to identify garbage

 Sometimes walking through a large amount of memory

 Cleaning the garbage leads to bursty delays

 E.g., periodic scans of the objects to hunt for garbage

 Leads to unpredictable “freezes” of the running program

 Very problematic for real-time applications

 … though good run-time systems avoid long freezes
50

Option #2: Manual

Deallocation

 Programmer deallocates the memory (C and C++)

 Manually determines which objects can’t be accessed

 And then explicitly returns those resources to the heap

 E.g., using “free” in C or “delete” in C++

 Advantages

 Lower overhead

 No unexpected “pauses”

 More efficient use of memory

 Disadvantages

 More complex for the programmer

 Subtle memory-related bugs

 Can lead to security vulnerabilities in code
51

Manual deallocation can lead

to bugs

 Dangling pointers

 Programmer frees a region of memory

 … but still has a pointer to it

 Dereferencing pointer reads or writes nonsense values

Copyright ©: University of Illinois CS 241 Staff 52

int main(void) {

 char *p;

 p = malloc(10);

 …

 free(p);

 …

 printf(“%c\n”,*p);

}

May print

nonsense

character

Manual deallocation can lead

to bugs

 Memory leak

 Programmer neglects to free unused region of memory

 So, the space can never be allocated again

 Eventually may consume all of the available memory

Copyright ©: University of Illinois CS 241 Staff 53

void f(void) {

 char *s;

 s = malloc(50);

}

int main(void) {

 while (1) f();

}

Eventually,

malloc()

returns

NULL

Manual deallocation can lead

to bugs

 Double free

 Programmer mistakenly frees a region more than once

 Leading to corruption of the heap data structure

 … or premature destruction of a different object

Copyright ©: University of Illinois CS 241 Staff 54

int main(void) {

 char *p, *q;

 p = malloc(10);

 …

 free(p)

 q = malloc(10);

 free(p)

}

Might free

space

allocated by

q!

Heap memory allocation

 C++:
 new and delete allocate memory for a

whole object

 C:
 malloc and free deal with unstructured

blocks of bytes

 void* malloc(size_t size);

 void free(void* ptr);

55 Copyright ©: University of Illinois CS 241 Staff

Example

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

Cast to the

right type

How many bytes

do you want?

Copyright ©: University of Illinois CS 241 Staff 56

I’m hungry. More bytes plz.

int* p = (int*) malloc(10 * sizeof(int));

 Now I have space for 10 integers, laid

out contiguously in memory. What

would be a good name for that...?

57 Copyright ©: University of Illinois CS 241 Staff

Arrays

 Contiguous block of memory

 Fits one or more elements of some type

 Two ways to allocate

 named variable

int x[10];

 dynamic

int* x = (int*)

malloc(10*sizeof(int));

Copyright ©: University of Illinois CS 241 Staff 58

One is on the

stack, one is on

the heap

Is there a

difference?

Arrays

int p[5];

p[0]

p[1]

p[2]

p[3]

p[4]

Name of array (is a pointer)

p

Shorthand:
*(p+1) is called p[1]

*(p+2) is called p[2]

etc..

Copyright ©: University of Illinois CS 241 Staff 59

Example

int y[4];

y[1]=6;

y[2]=2;
6

2

y[0]

y[1]

y[2]

y[3]

y

Copyright ©: University of Illinois CS 241 Staff 60

Array Name as Pointer

 What’s the difference between the examples?

 Example 1:

int z[8];

int *q;

q=z;

 Example 2:

int z[8];

int *q;

q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 61

Questions

 What’s the difference between

int* q;

int q[5];

 What’s wrong with

int ptr[2];

ptr[1] = 1;

ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 63

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

Copyright ©: University of Illinois CS 241 Staff 64

b[0] b[1] b[2]

q

Strings

Copyright ©: University of Illinois CS 241 Staff 69

Strings

(Null-terminated Arrays of Char)

 Strings are arrays that contain the

string characters followed by a “Null”

character ‘\0’ to indicate end of string.

 Do not forget to leave room for the null

character

 Example

 char s[5];

s[0]

s[1]

s[2]

s[3]

s[4]

s

Copyright ©: University of Illinois CS 241 Staff 70

Conventions

 Strings

 “string”

 “c”

 Characters

 ‘c’

 ‘X’

Copyright ©: University of Illinois CS 241 Staff 71

String Operations

 strcpy

 strlen

 strcat

 strcmp

Copyright ©: University of Illinois CS 241 Staff 72

strcpy, strlen

 strcpy(ptr1,

ptr2);

 ptr1 and ptr2 are

pointers to char

 value =

strlen(ptr);

 value is an integer

 ptr is a pointer to

char

int len;

char str[15];

strcpy (str, "Hello,

world!");

len = strlen(str);

Copyright ©: University of Illinois CS 241 Staff 73

strcpy, strlen

 What’s wrong with

char str[5];

strcpy (str, "Hello");

Copyright ©: University of Illinois CS 241 Staff 74

strncpy

 strncpy(ptr1,

ptr2, num);

 ptr1 and ptr2 are

pointers to char

 num is the number of

characters to be

copied

int len;

char str1[15],

str2[15];

strcpy (str1,

"Hello, world!");

strncpy (str2, str1,

5);

Copyright ©: University of Illinois CS 241 Staff 75

strncpy

 strncpy(ptr1,

ptr2, num);

 ptr1 and ptr2 are

pointers to char

 num is the number of

characters to be

copied

int len;

char str1[15],

str2[15];

strcpy (str1,

"Hello, world!");

strncpy (str2, str1,

5);

Caution: strncpy blindly copies the

characters. It does not voluntarily

append the string-terminating null

character.
Copyright ©: University of Illinois CS 241 Staff 76

strcat

 strcat(ptr1, ptr2);

 ptr1 and ptr2 are pointers to char

 Concatenates the two null terminated strings

yielding one string (pointed to by ptr1).

char S[25] = "world!";

char D[25] = "Hello, ";

strcat(D, S);

Copyright ©: University of Illinois CS 241 Staff 77

strcat

 strcat(ptr1, ptr2);

 ptr1 and ptr2 are pointers to char

 Concatenates the two null terminated strings

yielding one string (pointed to by ptr1).

 Find the end of the destination string

 Append the source string to the end of the destination

string

 Add a NULL to new destination string

Copyright ©: University of Illinois CS 241 Staff 78

strcat Example

 What’s wrong with

char S[25] = "world!";

strcat(“Hello, ”, S);

Copyright ©: University of Illinois CS 241 Staff 79

strcat Example

 What’s wrong with

char *s = malloc(11 * sizeof(char));

 /* Allocate enough memory for an

 array of 11 characters, enough

 to store a 10-char long string. */

strcat(s, "Hello");

strcat(s, "World");

Copyright ©: University of Illinois CS 241 Staff 80

strcat

 strcat(ptr1, ptr2);

 ptr1 and ptr2 are pointers to char

 Compare to Java and C++
 string s = s + " World!";

 What would you get in C?

 If you did char* ptr0 = ptr1+ptr2;

 You would get the sum of two memory locations!

Copyright ©: University of Illinois CS 241 Staff 81

strcmp

 diff = strcmp(ptr1, ptr2);

 diff is an integer

 ptr1 and ptr2 are pointers to char

 Returns

 zero if strings are identical

 < 0 if ptr1 is less than ptr2 (earlier in a dictionary)

 > 0 if ptr1 is greater than ptr2 (later in a dictionary)

int diff;

char s1[25] = "pat";

char s2[25] = "pet";

diff = strcmp(s1, s2);

Copyright ©: University of Illinois CS 241 Staff 82

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff 83

Can we make this work?!

int x;

printf("This class is %s.\n",);

Copyright ©: University of Illinois CS 241 Staff 84

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

 (char*)&x

Copyright ©: University of Illinois CS 241 Staff 85

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

((char*)&x)[0] = 'f';

86 Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

87 Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

((char*)&x)[3] = '\0';

Perfectly legal

and perfectly

horrible!

88 Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

char* s = &x;

strcpy(s, “fun”);

89 Copyright ©: University of Illinois CS 241 Staff

Perfectly legal

and perfectly

horrible!

Other operations

Copyright ©: University of Illinois CS 241 Staff 90

Increment & decrement

 x++: yield old value, add one

 ++x: add one, yield new value

 --x and x-- are similar (subtract one)

int x = 10;

x++;

int y = x++;

int z = ++x;

11

13

91 Copyright ©: University of Illinois CS 241 Staff

Math: Increment and

Decrement Operators

 Example 1:

int x, y, z, w;

y=10; w=2;

x=++y;

z=--w;

 Example 2:

int x, y, z, w;

y=10; w=2;

x=y++;

z=w--;

Copyright ©: University of Illinois CS 241 Staff 92

What are x

and y at the

end of each

example?

Math: Increment and Decrement

Operators on Pointers

 Example 1:

int a[2];

int number1, number2, *p;

a[0]=1; a[1]=10;

p=a;

number1 = *p++;

number2 = *p;

 What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 94

Math: Increment and Decrement

Operators on Pointers

 Example

int a[2];

int number1, number2, *p;

a[0]=1; a[1]=10;

p=a;

number1 = *p++;

number2 = *p;

 What will number1 and number2 be at the end?

Hint: ++ increments pointer p not

variable *p

Copyright ©: University of Illinois CS 241 Staff 95

Logic: Relational (Condition)

Operators

== equal to

!= not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Copyright ©: University of Illinois CS 241 Staff 96

Review

Copyright ©: University of Illinois CS 241 Staff 98

Review

 int p1;

What does &p1 mean?

99 Copyright ©: University of Illinois CS 241 Staff

Review

 How much is y at the end?

int y, x, *p;

x = 20;

*p = 10;

y = x + *p;

100 Copyright ©: University of Illinois CS 241 Staff

Review

 What are the differences between x

and y?

char* f() {

 char *x;

 static char*y;

 return y;

}

Copyright ©: University of Illinois CS 241 Staff 102

Review: Debugging

if(strcmp("a","a"))

printf("same!");

Copyright ©: University of Illinois CS 241 Staff 103

Review: Debugging

int i = 4;

int *iptr;

iptr = &i;

*iptr = 5;//now i=5

Copyright ©: University of Illinois CS 241 Staff 104

Review: Debugging

char *p;

p=(char*)malloc(99);

strcpy("Hello",p);

printf("%s World",p);

free(p);

Copyright ©: University of Illinois CS 241 Staff 105

Review: Debugging

char msg[5];

strcpy (msg,"Hello");

Copyright ©: University of Illinois CS 241 Staff 106

Operator Description Associativity

()

[]

.

->

++ --

Parentheses (function call)

Brackets (array subscript)

Member selection via object name

Member selection via pointer

Postfix increment/decrement

left-to-right

++ --

+ -

! ~

(type)

*

&

sizeof

Prefix increment/decrement

Unary plus/minus

Logical negation/bitwise complement

Cast (change type)

Dereference

Address

Determine size in bytes

right-to-left

* / % Multiplication/division/modulus left-to-right

+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right

< <=

> >=

Relational less than/less than or equal to

Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

|| Logical OR left-to-right

?: Ternary conditional right-to-left

=

+= -=

*= /=

%= &=

^= |=

<<= >>=

Assignment

Addition/subtraction assignment

Multiplication/division assignment

Modulus/bitwise AND assignment

Bitwise exclusive/inclusive OR assignment

Bitwise shift left/right assignment

right-to-left

, Comma (separate expressions) left-to-right

