
CS 241 (Summer 2012) Midterm Study Guide

C Programming

 What is POSIX?

 Explain the difference between a library function and a system call.

 Give an example of a POSIX system call used in CS241 lectures or reading.

 How does pointer arithmetic work?

 What is the * operator? What does it do? What is the & operator? What does it do?

 How do you define a function pointer?

 What is a String? What is NULL?

 What is the difference between strlen and sizeof?

 What’s the difference between a stack and a heap variable? What about global and static
variables?

 When is a stack full?

 How does malloc and free work?

 What’s the difference between char c[80] and char *c? …what about when they’re used in
sizeof()?

 What is the difference between a string and a string literal?

 How do strcpy, strcat, and strncat work?

Memory

 What is the difference between physical and virtual memory?

 What are the different memory allocation selection algorithms and what are the advantages of
each?

 How are virtual addresses translated to physical addresses in multi-level page tables? Given a
virtual address and the physical page number, can you write code to translate the virtual address
to a physical address?

 How do page size and the number of levels of page tables affect the number of entries in a page
table?

 What are the different page replacement policies and the advantages of each?

 Describe how the buddy system works and the run time for different operations.

 What is thrashing? When does it occur?

 What causes a SEGFAULT and what happens when one occurs?

 When is a process swapped out to disk?

 Name three benefits of virtual memory (as opposed to allowing programs to directly access
physical memory).

 Name one advantage of segmentation over paging, and one advantage of paging over
segmentation.

 Assuming a 32-bit address space and 4 KB pages, what is the virtual page # and offset for virtual
address 0xd34f6a5?

 Give an example of a page fault that is an error, and an example of a page fault that is not an
error.

 Given four physical blogs of ram and the sequence of virtual page accesses,
3,4,5,4,1,6,9,3,9,8,4,8,8,2, how many page faults occur in various schemes?

 Why are pages set to read-only in the copy-on-write technique?

 Suppose we have a 64-bit address space and 16 KB pages. How big is the page table of a single
process? What is the problem here? How would multi-level page tables help solve this problem?

 Which scheme is better: OPT or LRU? Why?

 How does the virtual memory subsystem know the exact location where a particular page is
stored on disk, if it is swapped out of memory?

 Compare and contrast (give one benefit and one disadvantage) for: implicit, explicit, segregated,
and buddy free lists.

Threads and Processes

 Which resources are shared between threads of the same process? Which are not shared?

 Write a simple program using pthread_create(). What is the possible output of your code?

CS 241 (Summer 2012) Midterm Study Guide

 X is a global variable and initially X = 0. What are the possible values for X after two threads both
try to increment X?

 What happens when a thread calls exit()?

 What happens to a process’s resources when it terminates normally?

 Describe what happens when a process calls fork().

 Under what conditions would a process exit normally?

 Explain the actions needed to perform a process context switch.

 Explain the actions needed to perform a thread context switch.

 Compare the use of fork() to the use of pthread_create().

 In a multiprocessor system, what conditions will cause threads within a process to block?

 Explain how a process can become orphaned and what the OS does with it. How about zombies?

 Describe how to use the POSIX call wait().

 Explain what happens when a process calls exec().

 What are the maximum number of threads that can be run concurrently? How is this number
determined?

 If a process spawns a number of threads, in what order will these threads run?

 Explain how to use pthread_detach() and pthread_join() and why these are used.

 Explain how a shell process can execute a different program.

 Explain how one process can wait on the return value of another process.

 Describe the transitions between running, ready and blocked in the 5 state model.

Scheduling

 Which policies have the possibility of resulting in the starvation of processes?

 Which scheduling algorithm results the smallest average wait time?

 What scheduling algorithm has the longest average response time?

 Define turnaround time, waiting time and response time in the context of scheduling algorithms?

 Why do processes need to be scheduled?

 What is starvation?

 What is response time? What other metrics do we use to evaluate scheduling algorithms?

 Which scheduling algorithm minimizes average initial response time? Waiting time? Turnaround
time?

 Why are SJF and Preemptive SJF hard to implement in real systems?

 What does it mean to preempt a process?

 What does it mean for a scheduling algorithm to be preemptive?

 Describe the Round-Robin scheduling algorithm. Explain the performance advantages and
disadvantages.

 Describe the First Come First Serve (FCFS) scheduling algorithm. Explain the performance
advantages and disadvantages.

 Describe the Pre-emptive and Non-preemptive SJF scheduling algorithms. Explain the
performance advantages and disadvantages.

 Describe the Preemptive Priority-based scheduling algorithm. Explain the performance
advantages and disadvantages.

 How does the length of the time quantum affect Round-Robin scheduling?

 Which scheduling algorithms guarantee progress?

 A process was switched from running to ready state. Describe the characteristics of the
scheduling algorithm being used.

 Which properties of scheduling algorithms affect the performance of interactive systems?

Semaphores / Mutexes

 When do you have to use a semaphore or mutex?

 What is mutual exclusion?

 How can use use a mutex lock to ensure that concurrent code operates correctly?

