
CS 241: System Programming Spring 2010

Course Syllabus

Staff:
Robin Kravets (Instructor)
Office: 3114 SC

Office Hours: Tuesdays 11-12, SC 3114

e-mail: rhk@illinois.edu

Brighten Godfrey (Instructor)
Office: 3128 SC

Office Hours: Wednesday 2-3, SC 3128

e-mail: pbg@illinois.edu

TAs: Wade Fagen, Liping Chen, Farhana Ashraf, Riccardo Crepaldi

See class web page for office hours times and locations.

Contact: All questions about or problems with the class contents, web page, procedures, HWs, MPs or

other material should be posted to the class newsgroup.

news: class.cs241

 All class questions

 This is your one-stop help-line!

 Will get answer < 24 hours

news: class.cs241.announce

 All class announcements (staff only)

Email should only be used for personal questions not postable on the news group.

e-mail: cs241help-sp10@cs.uiuc.edu

Textbook:
Introduction to Systems Concepts and Systems Programming

University of Illinois Custom Edition

Taken from:

Operating Systems: Internals and Design Principles, Fifth Edition

 by William Stallings

UNIX™ Systems Programming: Communication, Concurrency, and Threads

 by Kay A. Robbins and Steven Robbins

Computer Systems: A Programmer's Perspective

 by Randal E. Bryant and David R. O'Hallaron

Copyright © 2007 by Pearson Custom Publishing

ISBN 0-536-48928-9

Prerequisites:
CS 225, CS 231 and credit or concurrent registration in CS232 are the prerequisites for CS 241.

Description:
A computer needs an operating system to manage its resources and provide support for common functions

such as accessing peripherals. There are two categories of “customers” that an operating system must

support. The first category is the community of users. We have all used computers and you may recognize

operating systems functions such as creating folders (directories) and moving files around. These are

examples of operating system support for users. User support is not the objective of this course. This

http://www-sal.cs.uiuc.edu/~rhk/
mailto:cs241help-sp10@cs.uiuc.edu

course addresses operating system support for the second category of customers; namely, the

programmers. Those are people who write code to execute on the computer. When you write a program, it

may have to interact with physical hardware (keyboard, screen, mouse, printers, hard disk, or network.

For example, you may want to get input from a keyboard or mouse, you may want to read some

configuration file stored on disk, you may want to output data to a screen or printer, or you may want to

access a remote server across a network. The operating system presents common interfaces for

programmers to perform these functions. The operating system also provides useful abstractions such as

“tasks” (also called processes) “threads”, and “semaphores”. You can make the computer multitask by

calling the operating system interface for creating new tasks or new threads. You can make these tasks

coordinate and synchronize by using operating system semaphores. You can tell the computer the order in

which you want tasks to be executed, which is called a scheduling policy. Finally, you can manage

computer memory by calling the operating system function for memory management. System

programming refers to writing code that tasks advantage of operating system support for programmers.

This course is designed to introduce you to system programming.

By the end of this course, you should be proficient at writing programs that take full advantage of

operating system support. To be concrete, we need to fix an operating system and we need to choose a

programming language for writing programs. We chose the C language running on a Linux/UNIX

operating system (which implements the POSIX standard). The C over UNIX/Linux is a very common

combination used heavily by software that must provide high performance. It is much faster, for example,

tha Java or C++ over Windows. Hence, this course introduces you to systems programming via the

specific case of C over UNIX. By the end of the course you should be proficient with this programming

environment and should be able to write non-trivial pieces of software from web server code to your own

multiplayer Internet games. More specifically, after taking this course you should be able to accomplish

the following:

1. Identify the basic components of an operating system, describe their purpose, and explain how they

function.
2. Write, compile, debug, and execute C programs that correctly use system interfaces provided by

UNIX (or a UNIX-like operating system).
3. List UNIX system calls, and invoke them correctly from within C programs.
4. Describe the difference between programs, processes, and threads.
5. Explain the meaning and purpose of process control blocks and other mechanisms that the operating

system uses to implement the process and thread abstractions.
6. Write, compile, debug, and execute C programs that create, manage and terminate processes and

threads on UNIX.
7. Define concurrency and explain the problems that may arise because of concurrent execution of

multiple processes or threads. Explain how these problems can be avoided. Write code that avoids

these problems.
8. Define semaphores, mutexes, and other synchronization primitives, explain their purpose, and

describe their internal implementation.
9. Describe possible problems that arise from improper use of synchronization primitives (such as

deadlocks) and present their solutions.
10. Write, compile, debug, and execute C programs that use UNIX synchronization primitives.
11. Describe operating system scheduling and use UNIX interfaces to set and modify scheduling policy

parameters.
12. Define UNIX signals and signal handlers, and describe their use.
13. Write, compile, debug, and execute C programs with processes and threads that interact by invoking

and catching signals.

14. Describe, configure, and use operating system timers and clocks.
15. Identify and apply principles of queueing theory to evaluate system performance.
16. Describe the concepts of I/O devices, files, directories.
17. Explain the internal implementation of files systems and operating system I/O.
18. Write, compile, debug, and execute C programs that use files and I/O on UNIX.
19. Describe the machine memory hierarchy, describe its components such as caches and virtual memory,

and explain memory management mechanisms pertaining to these components such as paging and

segmentation.
20. Write, compile, debug, and execute C programs that make use of memory management functions.
21. Explain the concept of DMA.
22. Describe the protocols (such as TCP and IP) and interfaces (such as sockets) used for communication

among different computers.
23. Write distributed applications that communicate across a network.

Lectures:
11-11:50 am Monday, Wednesday and Friday in Room 1404 SC. Lectures cover important operating

system concepts, and their implementation. It is the students' responsibility to read the textbooks and

related materials. You are expected to attend lectures, and will be responsible for announcements made

during lecture, on the cs241 web page, and on the newsgroup, class.cs241 and class.announce.cs241.

Discussion Sections:
Discussion sections are all held in 0220 Siebel Center. They will be a mix of short presentations,

discussions and time for help with coding.

Grading:
Final Exam: 30%

Mid-term Exam: 20%

Homework (3): 15%

Team Machine Problems (7): 30%

Participation (Class involvement and pop quizzes): 5%

Academic Honesty:
Cheating is taken very seriously in CS 241. Be sure to understand the departmental policy on cheating.

Your work in this class must be your own. If students are found to have collaborated excessively or to

have blatantly cheated (e.g., by copying or sharing answers during an examination or sharing code for the

project), all involved will at a minimum receive grades of 0 for the first infraction and reported to the

academic office. Further infractions will result in failure in the course and/or recommendation for

dismissal from the university.

Note on Machine Problems and Homework Assignments:
The programming assignments in this class will be based on Posix Programming Interface. We will have

eight machine problems with different difficulty degrees. The MP assignments will be done in groups.

There will be three homework assignments. The homework assignments will be done individually by

each student. Please use the TSG Linux machines. To access these machines from outside the university,

please use CITES VPN client.

Late Policies:
 Homework

o Deadlines are strict

o Late submissions will not be considered

 MPs

o Please respect posted deadlines to ensure quick grading

o Late MPs will be penalized 2% for each late hour (rounded off to the higher hour)

o No submissions past 48 hours

Laboratory Facilities from CSIL:

We will be using linux machines, running POSIX system programming interface, in labs in 1245

DCL, 1265 and 1275 DCL and in 0216 SC (basement). You should make sure that you have

accounts on the CSIL machines to do your machine problem assignments. We recommend that

you use the machines csil-linux-ts1.cs.uiuc.edu or csil-linux-ts2.cs.uiuc.edu since

our auto-grader program will check your MP submissions on these machines.

TSG runs the CSIL labs, you can find out more details here:

TSG Machine Labs: https://agora.cs.uiuc.edu/display/CSIL/Facilities

TSG Web Site: https://cs.uiuc.edu/tsg

The DCL lab hours are 10 am to midnight, Sunday through Thursday, and 10 am to 6 pm Friday

and Saturday. 0216 SC is open 24/7. More details of the available facilities are available.

If you register late or otherwise have problems relating to the existence of your account, send

email to userhelp@cs.uiuc.edu.

https://agora.cs.uiuc.edu/display/CSIL/Facilities
https://cs.uiuc.edu/tsg
http://csil.cs.uiuc.edu/facilities.html

Class Schedule:

Note: this is a tentative schedule and may change to accommodate changes in the class.

Week Dates Lecture
Topic and

Slides
Readings

MPs and

HWs
Comments

1

1/18 Martin Luther King Day

1/20 1
Introduction to

OS's

How to study

guide

Survey Sheet (to be filled by you; not a test!

Please find it among the assessments in

Compass and submit it before next lecture)

1/22 2
Introduction to

C

Chapter 1;

Chapter 2. C

Tutorial here.

HW1

out

(Text

version)

2

1/25 3 C No Evil

1/27 4

Operating

Systems

Orientation

1/29 5 System Calls

I/O Syscall

tutorial here.

Use Chapter

3 for

reference as

needed.

HW1

due

MP1

out

Note: Chapter 3 gives a really good

overview of UNIX survival skills

MP1: Experiment and refresh your

knowledge of C

3

2/1 6 Processes

Chapter 4

(Sec 3.1-

Sec. 3.4),

Chapter 7

(Sec 3.1- Sec

3.4)

2/3 7 Processes (2)

Chapter 5

(Sec 4.1),

Chapter 7

(all), Chapter

8 (Sec 12.1 -

Sec 12.4)

2/5 8 Threads
Chapter 8

(all)

4

2/8 9
pThreads

Tutorial

MP1

due

MP2

out

MP2: Basic Processes and I/O

 2/10 10
Threads Systems

Concepts

HW2

out

2/12 11
Scheduling

Principles

Chapter 14

(Sec 9.1,

9.2).

http://www.cse.buffalo.edu/~rapaport/howtostudy.html
http://compass.illinois.edu/
http://www.lysator.liu.se/c/bwk-tutor.html
http://www.cs.utk.edu/~plank/plank/classes/cs360/360/notes/Syscall-Intro/lecture.html

5

2/15 12
Scheduling

Principles (2)

MP2

due

MP3

out

MP3: Scheduling

2/17 13 Synchronization

Chapter 9

(Sec 5.1,

5.2), Chapter

11.

2/19 14 Semaphores
Chapter 9

(Sec 5.3)

6

2/22 15
Semaphores and

Mutex

Chapter 12,

Chapter

13 (Sec 13.1-

13.3)

MP3

due

MP4

out

MP4: Synchronization

2/24 16

Classic

Synchronization

Problems

2/26 17
More on

Synchronization

7

3/1 18 Deadlocks

Chapter 10

(Sec 6.1 -

Sec 6.6)

HW 2

due.

3/3 19 Deadlocks

3/5 Midterm Review Lectures 1-17

8

3/8
In Class

Midterm Exam

3/10 20

Interprocess

Communication:

Pipes and

FIFOs

3/12 21

Interprocess

Communication:

Memory

Mapping

9

3/15 22
Introduction to

Networking
Beej's Guide

MP4

due.

MP5

out

MP5: IPC

3/17 23

Network

Programming

3/19 24
More Network

Programming

10

3/22
Spring Break

No Classes

3/24

3/26

http://beej.us/guide/bgnet/

11

3/29 25
Networked

Applications

Code

Example

 3/31 26

Advanced

Network

Programming

4/2 27 Networking

12

4/5 28

Introduction to

Signals, Signals,

Signal Mask

Chapter 15

(Sec 8.1 -

Sec. 8.4)

MP5 due

MP6 out
MP6: Networking and Sockets

4/7 29

Signals and

Timers

Chapter 15

(all), Chapter

16

4/9 30 IO

13

4/12 31
Files, IO,

devices

4/14 32

Files, IO,

devices
 HW3 out

4/16 33
Files, IO,

devices

14

4/19 34
Allocation &

VM

MP6 due

MP7 out
MP7: Files and I/O

4/21 35
Paging Memory

Hardware

4/23 36

Page

Replacement

and Page

Allocation

15

4/26 37
Advanced

Topics

4/28 38

Advanced

Topics
 HW3 due.

4/30 39
Advanced

Topics

16

5/3 41
Advanced

Topics
 MP7 due.

5/5 42

Wrap up and

Beyond CS241

 5/10 Final Exam: 7:00 - 10:00 p.m., Location TBA

http://www.cs.uiuc.edu/class/sp10/cs241/src/pushy.html
http://www.cs.uiuc.edu/class/sp10/cs241/src/pushy.html

