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A Disk Primer
� Disks consist of one or more platters divided into tracks

� Each platter may have one or two heads that perform read/write operations
� Each track consists of multiple sectors
� The set of sectors across all platters is a cylinder
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Hard Disk Evolution
� IBM 305 RAMAC (1956)

� First commercially produced hard drive
� 5 Mbyte capacity, 50 platters each 24” in diameter
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Hard Drive Evolution
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Disk access time
� Command overhead:

� Time to issue I/O, get the HDD to start responding, select appropriate 
head

� Seek time:
� Time to move disk arm to the appropriate track
� Depends on how fast you can physically move the disk arm

� These times are not improving rapidly!

Settle time:� Settle time:
� Time for head position to stabilize on the selected track

� Rotational latency:
� Time for the appropriate sector to move under the disk arm
� Depends on the rotation speed of the disk (e.g., 7200 RPM)

� Transfer time
� Time to transfer a sector to/from the disk controller
� Depends on density of bits on disk and RPM of disk rotation
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Disks are messy and slow
� Low-level interface for reading and writing sectors

� Generally allow OS to read/write an entire sector at a 
time

� No notion of “files” or “directories” -- just raw sectors
� So, what do you do if you need to write a single byte to 

a file?a file?
� Disk may have numerous bad blocks – OS may need to 

mask this from filesystem

� Access times are still very slow
� Disk seek times are around 10 ms

� Although raw throughput has increased dramatically

� Compare to several nanosec to access main memory
� Requires careful scheduling of I/O requests
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ATA Interfaces
� Serial ATA (SATA): Today’s standard for connecting hard 

drives to the motherboard
� Using a serial (not parallel) interface

� Earlier versions used a parallel interface (PATA)

� Speeds starting at 1.5 Gbit/sec (SATA 1.0)
� SATA 2.0 (3.0 Gbit/sec), SATA 3.0 (6.0 Gbit/sec)

� Can drive longer cables at much higher clock speeds than � Can drive longer cables at much higher clock speeds than 
parallel cable
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Disk I/O Scheduling
� Given multiple outstanding I/O requests, what order to 

issue them?
� Why does it matter?
� Major goals of disk scheduling:
� 1) Minimize latency for small transfers

� Primarily: Avoid long seeks by ordering accesses according to disk 
head localityhead locality

� 2) Maximize throughput for large transfers
� Large databases and scientific workloads often involve enormous 

files and datasets

� Note that disk block layout also has a large impact on 
performance
� Where we place file blocks, directories, file system metadata, etc.
� This will be covered in future lectures
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Disk I/O Scheduling
� Given multiple outstanding I/O requests, what order to issue them?
� FIFO: Just schedule each I/O in the order it arrives

� What's wrong with this? Potentially lots of seek time!

� SSTF: Shortest seek time first
� Issue I/O with the nearest cylinder to the current one
� Favors middle tracks: Head rarely moves to edges of disk

� SCAN (or Elevator) Algorithm:
� Head has a current direction and current cylinder
� Sort I/Os according to the track # in the current direction of the head
� If no more I/Os in the current direction, reverse direction

� CSCAN Algorithm:
� Always move in one direction, “wrap around” to beginning of disk when 

moving off the end
� Idea: Reduce variance in seek times, avoid discriminating against the 

highest and lowest tracks
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SCAN example
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SCAN example

What is the overhead of the SCAN algorithm?

Current track

Direction

� What is the overhead of the SCAN algorithm?
� Count the total amount of seek time to service all I/O 

requests
� I.e., count total number of track changes

� In this case, 12 tracks in --> direction
� 15 tracks for long seek back
� 5 tracks in <-- direction

� Total: 12+15+5 = 32 tracks
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What about flash?
� Non-volatile, solid state storage

� No moving parts!
� Fast access times (about 0.1 msec)
� Can read and write individual bytes at a time

� Limitations
� Block erasure: However, must erase a whole “block” 

before writing to it
� Read disturb: Reads can cause cells near the read 

cell to change
� Solution: Periodically re-write blocks

� Limited number of erase/write cycles
� Most flash on the market today can withstand up to 1 million 

erase/write cycles
� Flash Translation Layer (FTL): writes to a different cell each 

time to wear-level device, cache to avoid excessive writes

� How does this affect how we design filesystems???
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Input and Output
� A computer’s job is to process data

� Computation (CPU, cache, and memory)
� Move data into and out of a system (between I/O devices and 

memory)

� Challenges with I/O devices
� Different categories: storage, networking, displays, etc.

Large number of device drivers to support� Large number of device drivers to support
� Device drivers run in kernel mode and can crash systems

� Goals of the OS
� Provide a generic, consistent, convenient and reliable way to
� access I/O devices
� As device-independent as possible
� Don’t hurt the performance capability of the I/O system too much
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How does the CPU talk to devices?
� Devices controller: Circuit that enables devices to talk to 

the peripheral bus
� Host adapter: Circuit that enables the computer to talk to 

the peripheral bus
� Bus: Wires that transfer data between components inside 

computer
� Device controller allows OS to specify simpler instructions 

to access data
� Example: a disk controller

� Translates “access sector 23” to “move head reader 1.672725272 
cm from edge of platter”

� Disk controller “advertises” disk parameters to OS, hides internal 
disk geometry

� Most modern hard drives have disk controller embedded as a chip 
on the physical device
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Review: Computer Architecture
� Compute hardware

� CPU and caches
� Chipset
� Memory

� I/O Hardware
I/O bus or interconnect� I/O bus or interconnect

� I/O controller or adaptor
� I/O device

� Two types of I/O
� Programmed I/O (PIO)

� CPU does the work of moving data

� Direct Memory Access (DMA)
� CPU offloads the work of moving data to DMA controller 26



Programmed Input Device
� Device controller

� Status register
� ready: tells if the host is done
� busy: tells if the controller is done
� int: interrupt
� …

� Data registers

� A simple mouse design
Put (X, Y) in mouse’s device � Put (X, Y) in mouse’s device 
controller’s data registers on a move

� Interrupt

� Input on an interrupt
� CPU saves state of currently-

executing program
� Reads values in X, Y registers
� Sets ready bit
� Wakes up a process/thread or 

execute a piece of code to handle 
interrupt 27



Programmed Output Device
� Device

� Status registers (ready, busy, … )
� Data registers

� Example
� A serial output device

� Perform an output� Perform an output
� CPU: Poll the busy bit
� Writes the data to data register(s)
� Set ready bit
� Controller sets busy bit and 

transfers data
� Controller clears the busy bit
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Direct Memory Access (DMA)
� DMA controller or adaptor

� Status register (ready, busy, interrupt, …)
� DMA command register
� DMA register (address, size)
� DMA buffer

� Host CPU initiates DMA
� Device driver call (kernel mode)

Wait until DMA device is free� Wait until DMA device is free
� Initiate a DMA transaction
� (command, memory address, size)
� Block

� Controller performs DMA
� DMA data to device (size--; address++)
� Interrupt on completion (size == 0)

� Interrupt handler (on completion)
� Wakeup the blocked process
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Memory-mapped I/O

� Use the same address bus to address both 
memory and I/O devices
� The memory and registers of I/O devices are 

mapped to address values
� Allows same CPU instructions to be used with 

regular memory and devices

� I/O devices, memory controller, monitor 
address bus
� Each responds to addresses they own

� Orthogonal to DMA
� May be used with, or without, DMA
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Polling- vs. Interrupt-driven I/O
� Polling

� CPU issues I/O command 
� CPU directly writes instructions into device’s registers
� CPU busy waits for completion

� Interrupt-driven I/O
� CPU issues I/O command 
� CPU directly writes instructions into device’s registers� CPU directly writes instructions into device’s registers
� CPU continues operation until interrupt

� Direct Memory Access (DMA)
� Typically done with Interrupt-driven I/O
� CPU asks DMA controller to perform device-to-memory transfer
� DMA issues I/O command and transfers new item into memory
� CPU module is interrupted after completion

� Which is better, polling or interrupt-driven I/O?
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Polling- vs. Interrupt-driven I/O

� Polling
� Expensive for large transfers
� Better for small, dedicated systems with 

infrequent I/O

� Interrupt-driven 
� Overcomes CPU busy waiting
� I/O module interrupts when ready: event driven
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How Interrupts are implemented
� CPU hardware has an interrupt report line that the 

CPU tests after executing every instruction 
� If a(ny) device raises an interrupt by setting interrupt 

report line
� CPU catches the interrupt and saves the state of current running 

process into PCB
� CPU dispatches/starts the interrupt handler � CPU dispatches/starts the interrupt handler 
� Interrupt handler determines cause, services the device and clears 

the interrupt report line

� Other uses of interrupts: exceptions
� Division by zero, wrong address 
� System calls (software interrupts/signals, trap) 
� Virtual memory paging
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I/O Software Stack
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Interrupt Handling
� Save context (registers that hw hasn’t saved, PSW etc)
� Mask interrupts if needed
� Set up a context for interrupt service
� Set up a stack for interrupt service
� Acknowledge interrupt controller, perhaps enable it
� Save entire context to PCB� Save entire context to PCB
� Run the interrupt service
� Unmask interrupts if needed
� Possibly change the priority of the process
� Run the scheduler
� Then OS will set up context for next process, load registers 

and PSW, start running process …
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Device Drivers

� Manage the complexity and differences among specific types of 
devices (disk vs. mouse, different types of disks …)

� Each handles one type of device or small class of them (eg SCSI)
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Typical Device Driver Design
� Operating system and driver communication

� Commands and data between OS and device drivers

� Driver and hardware communication
� Commands and data between driver and hardware

� Driver responsibilities
Initialize devices� Initialize devices

� Interpreting commands from OS
� Schedule multiple outstanding requests
� Manage data transfers
� Accept and process interrupts
� Maintain the integrity of driver and kernel data 

structures
37



Device Driver Behavior
� Check input parameters for validity, and translate them to device 

specific language
� Check if device is free (wait or block if not)
� Issue commands to control device

� Write them into device controller’s registers
� Check after each if device is ready for next (wait or block if not)

� Block or wait for controller to finish work
Check for errors, and pass data to device-independent software� Check for errors, and pass data to device-independent software

� Return status information
� Process next queued request, or block waiting for next
� Challenges:

� Must be reentrant (can be called by an interrupt while running)
� Handle hot-pluggable devices and device removal while running
� Complex and many of them; bugs in them can crash system
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Types of I/O Devices
� Block devices

� Organize data in fixed-size blocks
� Transfers are in units of blocks
� Blocks have addresses and data are therefore addressable
� E.g. hard disks, USB disks, CD-ROMs

� Character devices
� Delivers or accepts a stream of characters, no block structure� Delivers or accepts a stream of characters, no block structure
� Not addressable, no seeks
� Can read from stream or write to stream
� Printers, network interfaces, terminals

� Like everything, not a perfect classification
� E.g. tape drives have blocks but not randomly accessed
� Clocks are I/O devices that just generate interrupts
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Char/Block Device Interfaces

� Character device interface
� read( deviceNumber, bufferAddr, size )

� Reads “size” bytes from a byte stream device to “bufferAddr”

� write( deviceNumber, bufferAddr, size )
� Write “size” bytes from “bufferAddr” to a byte stream device

� Block device interface� Block device interface
� read( deviceNumber, deviceAddr, bufferAddr )

� Transfer a block of data from “deviceAddr” to “bufferAddr”

� write( deviceNumber, deviceAddr, bufferAddr )
� Transfer a block of data from “bufferAddr” to “deviceAddr”

� seek( deviceNumber, deviceAddress )
� Move the head to the correct position
� Usually not necessary
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Sync vs Asynchronous I/O

� Synchronous I/O
� read() or write() will block a user process until 

its completion
� OS overlaps synchronous I/O with another 

process

� Asynchronous I/O
� read() or write() will not block a user process
� user process can do other things before I/O 

completion
� I/O completion will notify the user process
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Example: Blocked Read
� A process issues a read call which executes a system call
� System call code checks for correctness
� If it needs to perform I/O, it will issues a device driver call
� Device driver allocates a buffer for read and schedules I/O
� Controller performs DMA data transfer
� Block the current process and schedule a ready process� Block the current process and schedule a ready process
� Device generates an interrupt on completion
� Interrupt handler stores any data and notifies completion
� Move data from kernel buffer to user buffer
� Wakeup blocked process (make it ready)
� User process continues when it is scheduled to run
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Filesystems
� A filesystem provides a high-level application access to disk

� As well as CD, DVD, tape, floppy, etc...

� Masks the details of low-level sector-based I/O operations
� Provides structured access to data (files and directories)
� Caches recently-accessed data in memory

� Hierarchical filesystems: Most common type
� Organized as a tree of directories and files

� Byte-oriented vs. record-oriented files� Byte-oriented vs. record-oriented files
� UNIX, Windows, etc. all provide byte-oriented file access

� May read and write files a byte at a time

� Many older OS's provided only record-oriented files
� File composed of a set of records; may only read and write a record at a time

� Versioning filesystems
� Keep track of older versions of files
� e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2
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Filesystem Operations
� Filesystems provide a standard interface to files and directories:

� Create a file or directory
� Delete a file or directory
� Open a file or directory – allows subsequent access
� Read, write, append to file contents
� Add or remove directory entries
� Close a file or directory – terminates access

� What other features do filesystems provide?� What other features do filesystems provide?
� Accounting and quotas – prevent your classmates from hogging the disks
� Backup – some filesystems have a “$HOME/.backup” containing 

automatic snapshots
� Indexing and search capabilities
� File versioning
� Encryption
� Automatic compression of infrequently-used files

� Should this functionality be part of the filesystem or built on top?
� Classic OS community debate: Where is the best place to put 

functionality?
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Basic Filesystem Structures
� Every file and directory is represented by an inode

� Stands for “index node”

� Contains two kinds of information:
� 1) Metadata describing the file's owner, access rights, etc.
� 2) Location of the file's blocks on disk
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Directories
� A directory is a special kind of file that contains a list of (filename, 

inode number) pairs

� These are the contents of the directory “file data” itself – NOT the 
directory's inode!

� Filenames (in UNIX) are not stored in the inode at all!

� Two open questions:
� How do we find the root directory (“ / “ on UNIX systems)?
� How do we get from an inode number to the location of the inode on disk?
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Pathname resolution
� To look up a pathname “/etc/passwd”, start at root directory 

and walk down chain of inodes...
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Locating inodes on disk
� All right, so directories tell us the inode number of a file.

� How the heck do we find the inode itself on disk?

� Basic idea: Top part of filesystem contains all of the inodes!

� inode number is just the “index” of the inode
� Easy to compute the block address of a given inode:

� block_addr(inode_num) = block_offset_of_first_inode + (inode_num * 
inode_size)

� This implies that a filesystem has a fixed number of potential inodes
� This number is generally set when the filesystem is created

� The superblock stores important metadata on filesystem layout, list of free 
blocks, etc.
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Stupid directory tricks
� Directories map filenames to inode numbers. What does this imply?
� We can create multiple pointers to the same inode in different 

directories
� Or even the same directory with different filenames

� In UNIX this is called a “hard link” and can be done using “ln”

bash$ ls -i /home/foo

287663 /home/ foo (This is the inode number of “foo”)287663 /home/ foo (This is the inode number of “foo”)
bash$ ln /home/foo /tmp/foo

bash$ ls -i /home/foo /tmp/foo

287663 /home/foo

287663 /tmp/foo

� “/home/foo” and “/tmp/foo” now refer to the same file on disk
� Not a copy! You will always see identical data no matter which filename you 

use to read or write the file.

� Note: This is not the same as a “symbolic link”, which only links one 
filename to another.
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How should we organize blocks on a disk?

� Very simple policy: A file consists of linked blocks
� inode points to the first block of the file
� Each block points to the next block in the file (just a linked list on disk)

� What are the advantages and disadvantages??

� Indexed files� Indexed files
� inode contains a list of block numbers containing the file
� Array is allocated when the file is created

� What are the advantages and disadvantages??
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Multilevel indexed files
� inode contains a list of 10-15 direct block pointers

� First few blocks of file can be referred to by the inode itself

� inode also contains a pointer to a single indirect, double 
indirect, and triple indirect blocks
� Allows file to grow to be incredibly large!!!
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File system caching
� Most filesystems cache significant amounts of disk in 

memory
� e.g., Linux tries to use all “free” physical memory as a giant cache
� Avoids huge overhead for going to disk for every I/O
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Caching issues
� Where should the cache go?

� Below the filesystem layer: Cache individual disk blocks
� Above the filesystem layer: Cache entire files and directories
� Which is better??
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Caching issues (2)
� Reliability issues

� What happens when you write to the cache but the system crashes?
� What if you update some of the blocks on disk but not others?

� Example: Update the inode on disk but not the data blocks?

� Write-through cache: All writes immediately sent to disk
� Write-back cache: Cache writes stored in memory until evicted (then 

written to disk)
� Which is better for performance? For reliability?� Which is better for performance? For reliability?
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Caching issues (2)
� “Syncing” a filesystem writes back any dirty cache 

blocks to disk
� UNIX “sync” command achieves this.
� Can also use fsync() system call to sync any blocks for a given file.

� Warning – not all UNIX systems guarantee that after sync returns that the data has really been written to 
the disk!

� This is also complicated by memory caching on the disk itself.

� Crash recovery� Crash recovery
� If system crashes before sync occurs, “fsck” checks the filesystem 

for errors
� Example: an inode pointing to a block that is marked as free in the 

free block list
� Another example: An inode with no directory entry pointing to it

� These usually get linked into a “lost+found” directory 
� inode does not contain the filename so need the sysadmin to look at the file dataand guess where it might 

belong!
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Caching issues (3)
� Read ahead

� Recall: Seek time dominates overhead of disk I/O
� So, would ideally like to read multiple blocks into memory when 

you have a cache miss
� Amortize the cost of the seek for multiple reads

� Useful if file data is laid out in contiguous blocks on disk
� Especially if the application is performing sequential access to the file
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Modern Filesystem Tricks

� Extents
� Pre-allocation
� Delayed allocation (Block remapping)
� Colocating inodes and directories

Soft metadata updates� Soft metadata updates
� Journaling
� These tricks are used by many modern 

filesystems
� E.g., ext3 and ext4
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Extent-based transfers
� One idea: a gap between sectors on a track

� Try to take advantage of rotational latency for 
performing next read or write operation

� Problem: Hurts performance for multi-sector 
I/O!

� Cannot achieve the full transfer rate of the disk 
for large, contiguous reads or writes.

� Possible fix: Just get rid of the gap between � Possible fix: Just get rid of the gap between 
sectors
� Problem: “Dropped rotation” between 

consecutive reads or writes: have to wait for 
next sector to come around under the heads.
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� Hybrid approach - “extents” [McVoy, USENIX'91]
� Group blocks into “extents” or clusters of contiguous blocks
� Try to do all I/O on extents rather than individual blocks
� To avoid wasting I/O bandwidth, only do this when FS detects 

sequential access
� Kind of like just increasing the block size...



Block remapping
� Problem: Block numbers are allocated when they 

are first written
� FS maintains a free list of blocks and simply picks the 

first block off the list
� No guarantee that these blocks will be contiguous for a large 

write!

A single file may end up with blocks scattered across � A single file may end up with blocks scattered across 
the disk

� Why can't we maintain the free list in some sorted 
order?
� Problem: Interleaved writes to multiple files may end up 

causing each file to be discontiguous.
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Block remapping
� Idea: Delay determination of block address until cache is flushed

� Hope that multiple block writes will accumulate in the cache
� Can remap the block addresses for each file's writes to a contiguous set

� This is kind of a hack, introduced “underneath” the FFS block allocation layer.
� Meant fewer changes to the rest of the FFS code.
� Sometimes building real systems means making these kinds of tradeoffs!
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Colocating inodes and directories
� Problem: Reading small files is slow. Why?

� What happens when you try to read all files in a directory (e.g., “ls -
l” or “grep foo *”) ?

� Must first read directory.
� Then read inode for each file.
� Then read data pointed to by inode.

� Solution: Embed the inodes in the directory itself!� Solution: Embed the inodes in the directory itself!
� Recall: Directory just a set of <name, inode #> values
� Why not stuff inode contents in the directory file itself?

� Problem #2: Must still seek to read contents of each file in 
the directory.
� Solution: Pack all files in a directory in a contiguous set of blocks.
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Synchronous metadata updates

� Problem: Some updates to metadata 
require synchronous writes
� Means the data has to “hit the disk” before 

anything else can be done.

� Example #1: Creating a file� Example #1: Creating a file
� Must write the new file's inode to disk before 

the corresponding directory entry.
� Why???

� Example #2: Deleting a file
� Must clear out the directory entry before 

marking the inode as “free”
� Why??? 65
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Synchronous metadata updates
� Say that ...

� 1) Both inodes are in the 
same disk block.

� 2) Both the file create 
and file delete have 
happened in the cache, 
but neither has hit the but neither has hit the 
disk yet.

� Given this, what order 
are we allowed to write 
the disk blocks out?
� We have a cyclic 

dependency here!!! 
Arggghhhh ....
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Solution: Soft Updates

� Idea: Keep track of 
dependencies on a 
finer granularity
� Rather than at a 

block level, do this at 
a “data structure a “data structure 
level”

� Example: Track 
dependencies on 
individual inodes or 
directory entries.
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Soft Updates - Example
� How to break the cyclic 

dependency?
� “Roll back” one of the 

changes before writing the 
data out to disk!

� When flushing inode block 
(Block 2) to disk...(Block 2) to disk...
� Undo the file delete operation 

(as if it never happened!)
� Write out the inode block 

(Block 2) – still contains B!
� Then write out the directory 

block (Block 1) – still contains 
entry for B!

� Then redo the file delete 
operation ... can now 
proceed. 69



Log-structured Fileystems (LFS)
� Around '91, two trends in disk technology were emerging:

� Disk bandwidth was increasing rapidly (over 40% a year)
� Seek latency not improving much at all
� Machines had increasingly large main memories

� Large buffer caches absorb a large fraction of read I/Os

� Can use for writes as well!
� Coalesce several small writes into one larger write

� Some lingering problems with earlier filesystems...
� Writing to file metadata (inodes) was required to be synchronous

� Couldn't buffer metadata writes in memory

� Lots of small writes to file metadata means lots of seeks!

� LFS takes advantage of both to increase FS performance
� Started as a grad-school research project at Berkeley
� Mendel Rosenblum and John Ousterhout
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LFS: The basic idea
� Treat the entire disk as one big append-only log for writes!

� Don't try to lay out blocks on disk in some predetermined order
� Whenever a file write occurs, append it to the end of the log
� Whenever file metadata changes, append it to the end of the log

� Collect pending writes in memory and stream out in one 
big write
� Maximizes disk bandwidth� Maximizes disk bandwidth
� No “extra” seeks required (only those to move the end of the log)

� When do writes to the actual disk happen?
� When a user calls sync() -- synchronize data on disk for whole 

filesystem
� When a user calls fsync() -- synchronize data on disk for one file
� When OS needs to reclaim dirty buffer cache pages

� Note that this can often be avoided, eg., by preferring clean pages

� Sounds simple ...
� But lots of hairy details to deal with!

71



LFS Example

� Just append every new write that happens 
to the end of the log
� Writing a block in the middle of the file just 

appends that block to the end of the log
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LFS and inodes

� How do you locate file data?
� Sequential scan of the log is probably a bad 

idea ...

� Solution: Write the inodes to the tail of the 
log! (just like regular data)log! (just like regular data)
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LFS and inodes

� How do you locate file data?
� Sequential scan of the log is probably a bad 

idea ...

� Solution: Use FFS-style inodes!
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inode map (this is getting fun)
� Well, now, how do you find the inodes??

� Could also be anywhere in the log!

� Solution: inode maps
� Maps “file number” to the location of its inode in the log
� Note that inode map is also written to the log!!!!

Cache inode maps in memory for performance� Cache inode maps in memory for performance
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Reading from LFS

� But wait ... now file data is scattered all over 
the disk!
� Seems to obviate all of the benefits of grouping 

data on common cylinders

� Basic assumption: Buffer cache will handle � Basic assumption: Buffer cache will handle 
most read traffic
� Or at least, reads will happen to data roughly in 

the order in which it was written
� Take advantage of huge system memories to 

cache the heck out of the FS!
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Log cleaner
� With LFS, eventually the disk will fill up!

� Need some way to reclaim “dead space”

� What constitutes “dead space?”
� Deleted files
� File blocks that have been “overwritten”

Solution: Periodic “log cleaning”� Solution: Periodic “log cleaning”
� Scan the log and look for deleted or overwritten 

blocks
� Effectively, clear out stale log entries

� Copy live data to the end of the log
� The rest of the log (at the beginning) can now be 

reused!
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Log cleaning example
� LFS cleaner breaks log into segments

� Each segment is scanned by the cleaner
� Live blocks from a segment are copied into a new segment
� The entire scanned segment can then be reclaimed
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� The entire scanned segment can then be reclaimed
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Properties of LFS
� Advantages

� High write throughput
� Few in-place writes

� Some kinds of storage media have limited write/erase cycles per 
location (e.g., flash memory, CD-RW)

� LFS prolongs life of media through write-leveling

� Disadvantages� Disadvantages
� Increases file fragmentation, can harm performance on systems 

with high seek times
� Less throughputs on flash memory, where write fragmentation has 

much less of an impact on write throughput

� “Lies, damn lies, and benchmarks”
� It is very difficult to come up with definitive benchmarks proving 

that one system is better than another
� Can always find a scenario where one system design outperforms 

another
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Filesystem corruption
� What happens when you are making changes to a 

filesystem and the system crashes?
� Example: Modifying block 5 of a large directory, adding lots of new 

file entries
� System crashes while the block is being written
� The new files are “lost!”

� System runs fsck program on reboot� System runs fsck program on reboot
� Scans through the entire filesystem and locates corrupted inodes 

and directories
� Can typically find the bad directory, but may not be able to repair it!
� The directory could have been left in any state during the write

� fsck can take a very long time on large filesystems
� And, no guarantees that it fixes the problems anyway
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Journaling filesystems

� Ensure that changes to the filesystem are 
made atomically
� That is, a group of changes are made all 

together, or not at all

� Example: creating a new file� Example: creating a new file
� Need to write both the inode for the new file 

and the directory entry “together”
� Otherwise, if a crash happens between the two 

writes, either..
� 1) Directory points to a file that does not exist
� 2) Or, file is on disk but not included in any directory
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Journaling filesystems
� Goal: Make updates to filesystems appear to be atomic

� The directory either looks exactly as it did before the file was 
created

� Or the directory looks exactly as it did after the file was created
� Cannot leave an FS entity (data block, inode, directory, etc.) in an 

intermediate state!

� Idea: Maintain a log of all changes to the filesystem� Idea: Maintain a log of all changes to the filesystem
� Log contains information on any operations performed to the 

filesystem state
� e.g., “Directory 2841 had inodes 404, 407, and 408 added to it”

� To make a filesystem change:
� 1. Write an intent-to-commit record to the log
� 2. Write the appropriate changes to the log

� Do not modify the filesystem data directly!!!

� 3. Write a commit record to the log

� This is very similar to the notion of database transactions85



Journaling FS Recovery
� What happens when the system crashes?

� Filesystem data has not actually been modified, just the log!
� So, the FS itself reflects only what happened before the crash

� Periodically synchronize the log with the filesystem data
� Called a checkpoint
� Ensures that the FS data reflects all of the changes in the log

No need to scan the entire filesystem after a crash...� No need to scan the entire filesystem after a crash...
� Only need to look at the log entries since the last checkpoint!

� For each log entry, see if the commit record is there
� If not, consider the changes incomplete, and don't try to make 

them
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Journaling FS Example
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Journaling FS Example
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Journaling FS Example

� Filesystem reflects changes up to last checkpoint
� Fsck scans changelog from last checkpoint forward
� Doesn't find a commit record ... changes are simply 

ignored 89
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More recent filesystems

� How can we share filesystems over a 
network?
� NFS, SAN, NAS

� How can we make a filesystem resilient to 
failures?
� RAID
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Networked File System (NFS)

� NFS allows a system to access files over a 
network
� One of many distributed file systems
� Extremely successful and widely used

� You use NFS on all your shared files in the lab You use NFS on all your shared files in the lab 
machines
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Networked File System (NFS)
� Development of LANs made it really attractive to provide shared file 

systems to all machines on a network
� Login to any machine and see the same set of files
� Install software on a single server that all machines can run
� Let users collaborate on shared set of files (before CVS)

� Why might this be hard to do?
Clients and servers might be running different OS� Clients and servers might be running different OS

� Clients and servers might be using different CPU architecture with 
differing byte ordering (endianess)

� Client or server might crash independently of each other
� Must be easy to recover from crashes

� Potentially very large number of client machines on a network
� Different users might be trying to modify a shared file at the same time
� Transparency: Allow user programs to access remote files just like local 

files
� No special libraries, recompilation, etc.
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NFS Overview
� NFS was developed by Sun Microsystems in the mid-80s

� Networked machines at the time were predominantly UNIX-based workstations
� Various vendors: Sun, DEC, IBM, etc.
� Different CPU architectures and OS implementations

� But, all used UNIX filesystem structure and semantics

� NFS is based on Remote Procedure Call (RPC)
� Allows a client machine to invoke a function on a server machine, over a network
� Client sends a message with the function arguments

Server replies with a message with the return value.� Server replies with a message with the return value.

� External Data Representation (XDR) to represent data types
� Canonical network representation for ints, longs, byte arrays, etc.
� Clients and servers must translate parameters and return values of RPC calls into 

XDR before shipping on the network
� Otherwise, a little-endian machine and a big-endian machine would disagree on 

what is meant by the stream of bytes “fe 07 89 da” interpreted as an “int”
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NFS Design
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Stateless Protocol
� The NFS protocol is stateless

� The server maintains no information about individual clients!
� This means that NFS does not support any notion of “opening” or “closing” 

files
� Each client simply issues read and write requests specifying the file, offset 

in the file, and the requested size

� Advantages:
Server doesn't need to keep track of open/close status of files� Server doesn't need to keep track of open/close status of files

� Server doesn't need to keep track of “file offset” for each client's open files
� Clients do this themselves

� Server doesn't have to do anything to recover from a crash!
� Clients simply retry NFS operations until the server comes back up

� Disadvantages:
� Server doesn't keep track of concurrent access to same file
� Multiple clients might be modifying a file at the same time

� NFS does not provide any consistency guarantees!!!

� However, there is a separate locking protocol – discussed later
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NFS Protocol Overview
� mount() returns filehandle for root of filesystem

� Actually a separate protocol from NFS...

� lookup(dir-handle, filename) returns filehandle, attribs
� Returns unique file handle for a given file
� File handle used in subsequent read/write/etc. calls

� create(dir-handle, filename, attributes) returns filehandle
� remove(dir-handle, filename) returns status
� getattr(filehandle) returns attribs

� Returns attributes of the file, e.g., permissions, owner, group ID, 
size, access time, last-modified time

� setattr(filehandle, attribs) returns attribs
� read(filehandle, offset, size) returns attribs, data
� write(filehandle, offset, count, data) returns attribs
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NFS Caching

� NFS clients are responsible for caching recently-accessed data
� Remember: the server is stateless!

� The NFS protocol does not require that clients cache data ...
� But, it provides support allowing a range of client-side caching techniques

� This is accomplished through the getattr() call
� Returns size, permissions, and last-modified time of file
� This can tell a client whether a file has changed since it last read it
� Read/write calls also return attributes so client can tell if object was 

modified since the last getattr() call

� How often should the client use getattr()?
� Whenever the file is accessed? 

� Could lead to a lot of getattr calls!

� Only if the file has not been accessed for some time?
� e.g., If the file has not been accessed in 30 sec?

� Different OSs implement this differently!
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NFS Locking

� NFS does not prevent multiple clients from 
modifying a file simultaneously
� Clearly, this can be a Bad Thing for some 

applications...

� Solution: Network Lock Manager (NLM) � Solution: Network Lock Manager (NLM) 
protocol
� Works alongside NFS to provide file locking
� NFS itself does not know anything about locks

� Clients have to use NLM “voluntarily” to avoid 
stomping on each other

� NLM has to be stateful
� Why? 99



NLM Protocol
� NLM server has to keep track of locks held by clients
� If the NLM server crashes...

� All locks are released!
� BUT ... clients can reestablish locks during a “grace period” after the 

server recovers
� No new locks are granted during the grace period
� Server has to remember which locks were previously held by clients

� If an NLM client crashes...� If an NLM client crashes...
� The server is notified when the client recovers and releases all of its locks

� What happens if a client crashes and does not come back up for a while?

� Servers and clients must be notified when they crash and 
recover
� This is done with the simple “Network Status Monitor” (NSM) protocol
� Essentially, send a notification to the other host when you reboot
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NLM Example

Client A “lock file foo, offset 0 len 512”

“lock granted”
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Client B

Server
“lock file foo, offset 0 len 512”

“denied!”

Client A,
foo[0…512]



NLM Example

Client A
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Client B

Server

Client A,
foo[0…512]



NLM Example

Client A
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Client B

ServerRestart notification

Client A,
foo[0…512]



NLM Example

Client A “relock file foo, offset 0 len 512”

“lock granted”
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Client B

Server

Client A,
foo[0…512]
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RAID Motivation
� Speed of disks not matching other components

� Moore’s law: CPU speed doubles every 18 months
� SRAM speeds increasing by 40-100% a year
� In contrast, disk seek time only improving 7% a year

� Although greater density leads to improved transfer times once seek is done

� Emergence of PCs starting to drive down costs of disks
� (This is 1988 after all)

PC-class disks were smaller, cheaper, and only marginally slower� PC-class disks were smaller, cheaper, and only marginally slower
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RAID Motivation
� Basic idea: Build I/O systems as arrays of cheap 

disks
� Allow data to be striped across multiple disks
� Means you can read/write multiple disks in parallel –

greatly improve performance

� Problem: disks are extremely unreliable� Problem: disks are extremely unreliable
� Mean Time to Failure (MTTF)

� MTTF (disk array) = MTTF (single disk) / # disks
� Adding more disks means that failures happen more 

frequently..
� An array of 100 disks with an MTTF of 30,000 hours = 

just under 2 weeks!
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Increasing reliability
� Idea: Replicate data across multiple disks

� When a disk fails, lost information can be regenerated from the 
redundant data

� Simplest form: Mirroring (also called “RAID 1”)
� All data is mirrored across two disks

� Advantages:
Reads are faster, since both disks can be read in parallel� Reads are faster, since both disks can be read in parallel

� Higher reliability (of course)

� Disadvantages:
� Writes are slightly slower, since OS must wait for both disks to do 

write
� This approach also doubles the cost of the storage system!
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RAID 3
� Rather than mirroring, use parity codes

� Given N bits {b1, b2, ... bN}, the parity bit P is the bit {0,1} that yields an 
even number of “1” bits in the set {b1, b2, ... bN, P}

� Idea: If any bit in {b1, b2, ... bN} is lost, can use the remaining bits (plus P) 
to recover it.

� Where to store the parity codes?
� Add an extra “check disk” that stores parity bits for the data stored on the 

rest of the N rest of the N 

� disks
� Advantages: 

� If a single disk fails, can easily recompute the lost data from the parity 
code

� Can use one parity disk for several data disks (reduces cost)

� Disadvantages:
� Each write to a block must update the corresponding parity block as well
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RAID 3 example
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RAID 3 example
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RAID 3 example
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RAID 3 example
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RAID 3 example

� 1. Read back data from other disks
� 2. Recalculate lost data from parity code
� 3. Rebuild data on lost disk
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RAID 3 issues
� What is the MTTF of RAID?

� Both RAID 1 and RAID 3 tolerate the failure of a single disk
� As long as a second disk does not die while we are repairing the first 

failure,we are in good shape!

� So, what is the probability of a second disk failure?
� P(2nd failure) = MTTR / (MTTF of one disk  / # disks -1)

� This can be derived from independent and exponential failure rates
� See Patterson RAID paper for details

� 10 disks, MTTF (disk) = 1000 days, MTTR = 1 day
� P(2nd failure) = 1 day / ( 1000 / 9 ) = 0.009

� What is the performance of RAID 3?
� Well, the check disk must be updated each time there is a write
� Problem: The check disk is then a performance bottleneck

� Only a single read/write can be done at once on the whole system!
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RAID 5
� Another approach: Interleaved check blocks (“RAID 5”)

� Rotate the assignment of data blocks and check blocks across 
disks

� Avoids the bottleneck of a single disk for storing check data
� Allows multiple reads/writes to occur in parallel (since different 

disks affected)
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