
Memory: Part II

Copyright ©: University of Illinois CS 241 Staff 1

Administrivia

� Matt Caesar’s office hours
� W 5-7pm, 3118
� And by request

2

Recap: Virtual Addresses
� A virtual address is a memory address that a process uses

to access its own memory
� The virtual address is not the same as the actual physical RAM address in

which it is stored
� When a process accesses a virtual address, the MMU hardware translates

the virtual address into a physical address
� The OS determines the mapping from virtual address to physical address

� Benefit: Isolation� Benefit: Isolation
� Virtual addresses in one process refer to different physical memory than

virtual addresses in another
� Exception: shared memory regions between processes (discussed later)

� Benefit: Illusion of larger memory space
� Can store unused parts of virtual memory on disk temporarily

� Benefit: Relocation
� A program does not need to know which physical addresses it will

use when it’s run
Copyright ©: University of Illinois CS 241 Staff 3

Mapping virtual to physical addresses

Stack

(Reserved for OS)

How does this thing work??

4

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

Physical RAM

MMU

MMU and TLB
� Memory Management Unit (MMU)

� Hardware that translates a virtual address to a physical address
� Each memory reference is passed through the MMU
� Translate a virtual address to a physical address

� Lots of ways of doing this!

� Translation Lookaside Buffer (TLB)
� Cache for MMU virtual-to-physical address translations� Cache for MMU virtual-to-physical address translations
� Just an optimization – but an important one!

5

CPU MMU
Virtual

address
Physical
address Memory

TLB

Cache of translations

Translation
mapping

Recap: dividing up memory

� Fixed partitions
� Break memory into equally-sized pieces
� Problem: no single size appropriate for all

programs

� Variable partitions (segments)� Variable partitions (segments)
� Resize pieces based on process needs
� Problem: external fragmentation

� As jobs run and complete, holes left in physical
memory

� Modern approach: Paging
� We’ll discuss this today

6

Paging
� Solve the external fragmentation problem by using fixed-

size chunks of virtual and physical memory
� Virtual memory unit called a page
� Physical memory unit called a frame (or sometimes page frame)

physical memory

page 0

virtual memory
(for one process)

7

frame 0

frame 1

frame 2

frame Y

…

page 0

page 1

page 2

page X

…

page 3

..
.

..
.

Application Perspective
� Application believes it has a single, contiguous address space ranging from 0

to 2P – 1 bytes
� Where P is the number of bits in a pointer (e.g., 32 bits)

� In reality, virtual pages are scattered across physical memory
� This mapping is invisible to the program, and not even under it's control!

Stack

(Reserved for OS)

Lots of separate processes

8

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

Physical RAM

MMU

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Looking up a Page
� Virtual-to-physical address translation performed by MMU

� Virtual address is broken into a virtual page number and an offset
� Mapping from virtual page to physical frame provided by a page

table (which is stored in memory)

0xdeadbeef = 0xdeadb 0xeef

Virtual page number Offset
virtual address

page
frame 0

page
frame 1

page
frame 2

page
frame Y

page
frame 3

physical memory

offset
physical address

page frame #page frame #

page table

offset
virtual address

virtual page #

..
.Page table entry

0x
de

ad
b

0xeef

Page Tables
� Page Tables store the virtual-to-physical address mappings.
� Where are they located? In memory!
� OK, then. How does the MMU access them?

� The MMU has a special register called the page table base pointer.
� This points to the physical memory address of the top of the page table

for the currently-running process.

10

Process A page tbl

Process B page tbl

Physical RAM

MMU pgtbl base ptr

Page Faults
� What happens when a program accesses a virtual page

that is not mapped into any physical page?
� Hardware triggers a page fault

� Page fault handler
� Find any available free physical page
� If none, evict some resident page to disk
� Allocate a free physical page� Allocate a free physical page
� Load the faulted virtual page to the prepared physical page
� Modify the page table

Copyright ©: University of Illinois CS 241 Staff 11

Advantages of Paging
� Simplifies physical memory management

� OS maintains a free list of physical page frames
� To allocate a physical page, just remove an entry from this list

� No external fragmentation!
� Virtual pages from different processes can be interspersed in

physical memory
� No need to allocate pages in a contiguous fashion� No need to allocate pages in a contiguous fashion

� Allocation of memory can be performed at a fine
granularity
� Only allocate physical memory to those parts of the address space

that require it
� Can swap unused pages out to disk when physical memory is

running low
� Idle programs won't use up a lot of memory (even if their address

space is huge!)
12

Translation Process
if (virtual page is invalid or non-resident or protected)

{

trap to OS fault handler

} else {

physical page # = pageTable[virtpage#]

.physPageNum

}

� Each virtual page can be in physical memory or swapped � Each virtual page can be in physical memory or swapped
out to disk (called paged)

� What must change on a context switch?
� Could copy entire contents of table, but this will be slow
� Instead use an extra layer of indirection and change the pointer to

the page table

Copyright ©: University of Illinois CS 241 Staff 13

Paging Example

3 1
2

Cache
1

2

3

Page Table
VM Frame

Real MemoryRequest Address within
Virtual Memory Page 3

Copyright ©: University of Illinois CS 241 Staff 14

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

3

4

Paging Example

3 1
1 2

Cache
1

2

3

Page Table
VM Frame

Real MemoryRequest Address within
Virtual Memory Page 1

Copyright ©: University of Illinois CS 241 Staff 15

1 2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

3

4

Paging Example

3 1
1 2

Cache
1

2

3

Page Table

VM Frame

Real MemoryRequest Address within
Virtual Memory Page 6

Copyright ©: University of Illinois CS 241 Staff 16

1
6

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

3

4

Paging Example

3 1
1 2

Cache
1

2

3

Page Table

VM Frame

Real MemoryRequest Address within
Virtual Memory Page 2

Copyright ©: University of Illinois CS 241 Staff 17

1
6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

3

4

Paging Example

3 1
1 2

Cache
1

2

3

Page Table

VM Frame

Real MemoryRequest Address within
Virtual Memory Page 8

What happens when there

Copyright ©: University of Illinois CS 241 Staff 18

1
6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

3

4

What happens when there
is no more space in the

cache?

Paging Example

3 1
1 2

Cache
1

2

3

Page Table

VM Frame

Real MemoryStore Virtual Memory
Page 1 to disk

Copyright ©: University of Illinois CS 241 Staff 19

1
6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

3

4

Paging Example

3 1
2

Cache
1

2

3

Page Table

VM Frame

Real MemoryProcess request for Address
within Virtual Memory Page 8

Copyright ©: University of Illinois CS 241 Staff 20

6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

3

4

Paging Example

3 1
8 2

Cache
1

2

3

Page Table

VM Frame

Real MemoryLoad Virtual Memory
Page 8 to cache

Copyright ©: University of Illinois CS 241 Staff 21

8
6
2

2
3
4

Disk

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

3

4

Paging

� Like segments, pages can have different
protections
� Read, write, execute

� How does the processor know that a virtual
page is not in memory?page is not in memory?
� Resident bit tells the hardware that the virtual

address is non-resident

Copyright ©: University of Illinois CS 241 Staff 22

Valid vs. Resident

� Resident
� Virtual page is in memory
� NOT an error for a program to access non-

resident page

� Valid � Valid
� Virtual page is legal for the program to access
� e.g., part of the address space

Copyright ©: University of Illinois CS 241 Staff 23

Valid vs. Resident
� Who makes a page resident/non-resident?

� Who makes a virtual page valid/invalid?

� Why would a process want one if its virtual pages
to be invalid?to be invalid?

Copyright ©: University of Illinois CS 241 Staff 24

Valid vs. Resident
� Who makes a page resident/non-resident?

� OS memory manager

� Who makes a virtual page valid/invalid?
� User actions

� Why would a process want one if its virtual pages
to be invalid?to be invalid?
� Avoid accidental memory references to bad locations

Copyright ©: University of Illinois CS 241 Staff 25

Page Table Entry
� Typical PTE format (depends on CPU architecture!)

� Various bits accessed by MMU on each page
access:

page frame numberprotVRM

202111

access:
� Modify bit: Indicates whether a page is “dirty” (modified)
� Reference bit: Indicates whether a page has been accessed

(read or written)
� Valid bit: Whether the PTE represents a real memory mapping
� Protection bits: Specify if page is readable, writable, or

executable
� Page frame number: Physical location of page in RAM

� Why is this 20 bits wide in the above example?
26

Speeding up lookups with a TLB
� Now we've introduced a high overhead for address translation

� On every memory access, must have a separate access to consult the
page tables!

� Solution: Translation Lookaside Buffer (TLB)
� Very fast (but small, eg 128 entries on P6) cache directly on the CPU
� Caches most recent virtual to physical address translations
� Implemented as fully associative cache
� Any address can be stored in any entry in the cache� Any address can be stored in any entry in the cache
� All entries searched “in parallel” on every address translation
� A TLB miss requires that the MMU actually try to do the address translati

27

0x002bb

0x49381

0xab790
0xdeadb
0x49200
0xef455
0x978b2
0xef456

0x00200

0x0025b
0x002bb
0x00468
0x004f8
0x0030f
0x0020a

0xdeadb

Virtual page addr Physical frame addr

Virtual Physical

Page Faults

CPU MMU
Virtual

address
Physical
address Memory

Translation
mapping

Page fault!!

� When a virtual address translation cannot be
performed, it's called a page fault
� Triggers trap to kernel to handle fault
� Page faults are not errors

� What could cause a page fault? 28

TLB

Reasons for Page Faults

� Write to read only page (protection fault)
� OS kills the program that made the illegal

access
� Some OSes make zero page inaccessible to � Some OSes make zero page inaccessible to

trap use of NULL pointers

� Read/write to/from page not in memory
� OS tries to make page available by paging in

from the disk

29

Remember fork()?

� fork() creates an exact copy of a process
� When we fork a new process, does it make

sense to make a copy of all of its memory?
� Why or why not?

� What if the child process doesn't end up � What if the child process doesn't end up
touching most of the memory the parent
was using?
� Extreme example: What happens if a process

does an exec() immediately after fork()?

30

Copy-on-write
� Idea: Give the child process access to the same memory,

but don't let it write to any of the pages directly!
� 1) Parent forks a child process
� 2) Child gets a copy of the parent's page tables

� They point to the same physical frames!!!

(Reserved for OS)

Parent
Parent's
page tbl

(Reserved for OS)

Child
Child's
page tbl

31

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Copy-on-write

� All pages (both parent and child) marked
read-only
� Why?

(Reserved for OS)

Parent
Parent's
page tbl

(Reserved for OS)

Child
Child's
page tbl

32

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Copy-on-write
� What happens when the child reads the page?

� Just accesses same memory as parent niiiiiice

� What happens when the child writes the page?
� Protection fault occurs (page is read-only!)
� OS copies the page and maps it R/W into the child's addr space

(Reserved for OS)

Parent
Parent's
page tbl

(Reserved for OS)

Child
Child's
page tbl

33

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Copy-on-write
� What happens when the child reads the page?

� Just accesses same memory as parent niiiiiice

� What happens when the child writes the page?
� Protection fault occurs (page is read-only!)
� OS copies the page and maps it R/W into the child's addr space

(Reserved for OS)

Parent
Parent's
page tbl

(Reserved for OS)

Child
Child's
page tbl

34

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Copy page

Copy-on-write
� What happens when the child reads the page?

� Just accesses same memory as parent niiiiiice

� What happens when the child writes the page?
� Protection fault occurs (page is read-only!)
� OS copies the page and maps it R/W into the child's addr space

(Reserved for OS)

Parent
Parent's
page tbl

(Reserved for OS)

Child
Child's
page tbl

35

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)
page tbl

RW

More Page Sharing Tricks

� Can also share code segment

Stack

(Reserved for OS)

Stack

(Reserved for OS)

Shell #1

Shell #2

Physical Memory

36

Heap

Initialized vars

Code

Uninitialized
vars

Heap

Initialized vars

Code

Uninitialized
vars Stack

Heap

Initialized vars

Code

Uninitialized
vars

(Reserved for OS)

Code for shell

Same page
table mapping!

More Page Sharing Tricks
� Can let different processes share read/write memory

� UNIX supports shared memory through the shmget/shmat/shmdt system
calls

� Allocates a region of memory that is shared across multiple processes
� Some of the benefits of multiple threads per process, but the rest of the

process’s address space is protected

� Memory-mapped files
Idea: Make a file on disk look like a block of memory� Idea: Make a file on disk look like a block of memory

� Works just like faulting in pages from executable files
� In fact, many OS's use the same code for both
� One wrinkle: Writes to the memory region must be reflected in the file
� How does this work?
� When writing to the page, mark the “modified” bit in the PTE
� When page is removed from memory, write back to original file

37

Benefits of sharing pages
� How much memory savings do we get from sharing pages across

identical processes?
� A lot! Use the “top” command...

38

Page Table Sizes
� How big are the page tables for a process?
� Well ... we need one PTE per page.
� Say we have a 32-bit address space, and the page size is

4KB
� How many pages?

� 2^32 == 4GB / 4KB per page == 1,048,576 (1 M pages)

� How big is each PTE?
� Depends on the CPU architecture ... on the x86, it's 4 bytes.

� So, the total page table size is: 1 M pages * 4 bytes/PTE
== 4 Mbytes
� And that is per process
� If we have 100 running processes, that's over 400 Mbytes of memory

just for the page tables.

� Solution: Swap the page tables out to disk!
39

Multilevel Page Tables
� Main idea: Page the Page Tables

� Allow portions of the page tables to be kept in memory at a time
� Secondary page tables can be paged out to disk
� Only (much smaller) primary page table needs to stay resident

physical memory

offset

virtual address

primary page # secondary page #

40

page frame #
page frame #

page frame #

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

offset

physical address

page frame #page table #

..
.

page frame #

Primary page
table (1) Secondary page

tables (N)

Multilevel Page Tables
� With two levels of page tables, how big is each table?

� Say we allocate 10 bits to the primary page, 10 bits to the secondary
page, 12 bits to the page offset

� Primary page table is then 2^10 * 4 bytes per PTE == 4 KB
� Secondary page table is also 4 KB
� Hey ... that's exactly the size of a page on most systems ... cool

� What happens on a page fault?
� MMU looks up index in primary page table to get secondary page table
� MMU tries to access secondary page table

� May result in another page fault to load the secondary table!

� MMU looks up index in secondary page table to get PFN
� CPU can then access physical memory address

� Issues
� Page translation has very high overhead

� Up to three memory accesses plus two disk I/Os!!

� TLB usage is clearly very important.

41

Problem (from Tanenbaum)

� A computer with a 32-bit address uses a
two-level page table. Virtual addresses split
into a 9-bit top-level page table field, an 11-
bit second-level page table field, and an
offset. How large are the pages and how
many are there in the address space?

Copyright ©: University of Illinois CS 241 Staff 42

Paging
� On heavily-loaded systems, memory can fill up
� Need to make room for newly-accessed pages

� Heuristic: try to move “inactive” pages out to disk
� What constitutes an “inactive” page?

� Paging
Refers to moving individual pages out to disk (and � Refers to moving individual pages out to disk (and
back)

� We often use the terms “paging” and “swapping”
interchangeably

� Different from context switching
� Background processes often have their pages remain resident

in memory

44

Page Eviction

� When do we decide to evict a page from
memory?
� Usually, at the same time that we are trying to

allocate a new physical page
� However, the OS keeps a pool of “free pages”

around, even when memory is tight, so that
allocating a new page can be done quickly

� The process of evicting pages to disk is then
performed in the background

45

Basic Page Replacement

� How do we replace pages?
� Find the location of the desired page on disk
� Find a free frame

� If there is a free frame, use it
� If there is no free frame, use a page replacement

algorithm to select a victim framealgorithm to select a victim frame

� Read the desired page into the (newly) free
frame. Update the page and frame tables.

� Restart the process

46

Exploiting Locality
� Exploiting locality

� Temporal locality: Memory accessed recently tends to be
accessed again soon

� Spatial locality: Memory locations near recently-accessed
memory is likely to be referenced soon

� Locality helps to reduce the frequency of paging� Locality helps to reduce the frequency of paging
� Once something is in memory, it should be used many

times

� This depends on many things:
� The amount of locality and reference patterns in a

program
� The page replacement policy
� The amount of physical memory and the application

footprint 47

Evicting the Best Page
� Goal of the page replacement algorithm:

� Reduce page fault rate by selecting the best page to evict

� The “best” pages are those that will never be used again
� However, it's impossible to know in general whether a page will be

touched
� If you have information on future access patterns, it is possible to

prove that evicting those pages that will be used the furthest in the prove that evicting those pages that will be used the furthest in the
future will minimize the page fault rate

� What is the best algorithm for deciding the order to evict
pages?
� Much attention has been paid to this problem.
� Used to be a very hot research topic.
� These days, widely considered solved (at least, solved well

enough)

48

Algorithm: OPT (a.k.a. MIN)

� Evict page that won't be used for the longest
time in the future
� Of course, this requires that we can foresee the

future...
� So OPT cannot be implemented!

� This algorithm has the provably optimal
performance
� Hence the name “OPT”

� OPT is useful as a “yardstick” to compare
the performance of other (implementable)
algorithms against

49

The Optimal Page
Replacement Algorithm

� Idea:
� Select the page that will not be needed for the

longest time in the future

50

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a

b b b b

c c c c

d d d d

X

Copyright ©: University of Illinois CS 241 Staff

The Optimal Page
Replacement Algorithm

� Idea:
� Select the page that will not be needed for the

longest time in the future

51

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a a a a a a

b b b b b b b b b

c c c c c c c c c

d d d d e e e e e

X X

Copyright ©: University of Illinois CS 241 Staff

The Optimal Page
Replacement Algorithm

� Idea:
� Select the page that will not be needed for the

longest time in the future

52

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a a a a a a a

b b b b b b b b b b

c c c c c c c c c c

d d d d e e e e e d

X X

Copyright ©: University of Illinois CS 241 Staff

Algorithms: Random and FIFO

� Random: Throw out a random page
� Obviously not the best scheme
� Although very easy to implement!

� FIFO: Throw out pages in the order that
they were allocatedthey were allocated
� Maintain a list of allocated pages
� When the length of the list grows to cover all of

physical memory, pop first page off list and
allocate it

� Why might FIFO be good?
� Why might FIFO not be so good?

53

Algorithms: Random and FIFO
� FIFO: Throw out pages in the order that they were

allocated
� Maintain a list of allocated pages
� When the length of the list grows to cover all of physical

memory, pop first page off list and allocate it

� Why might FIFO be good?� Why might FIFO be good?
� Maybe the page allocated very long ago isn’t used

anymore

� Why might FIFO not be so good?
� Doesn’t consider locality of reference!
� Suffers from Belady’s anomaly: Performance of an

application might get worse as the size of physical
memory increases!!!

54

Belady’s Anomaly

0 1 2 3 0 1 4 0 1 2 3 4

0 0

1

0

1

2

1

2

3

2

3

0

3

0

1

0

1

4

0

1

4

0

1

4

1

4

2

4

2

3

4

2

3

Access pattern

Physical memory
(3 page frames)

9 page faults!

time

55

0 1 2 3 0 1 4 0 1 2 3 4

0 0

1

0

1

2

0

1

2
3

0

1

2
3

0

1

2
3

1

2

3
4

2

3

4
0

3

4

0
1

4

0

1
2

0

1

2
3

1

2

3
4

time

Access pattern

Physical memory
(4 page frames) 10 page faults!

Algorithm: Least Recently Used (LRU)

� Evict the page that was used the longest time ago
� Keep track of when pages are referenced to make a

better decision
� Use past behavior to predict future behavior

� LRU uses past information, while OPT uses future information

� When does LRU work well, and when does it not?� When does LRU work well, and when does it not?

� Implementation
� Every time a page is accessed, record a timestamp of

the access time
� When choosing a page to evict, scan over all pages

and throw out page with oldest timestamp

� Problems with this implementation?

56

Algorithm: Least Recently Used (LRU)

� Evict the page that was used the longest time ago
� Keep track of when pages are referenced to make a better

decision
� Use past behavior to predict future behavior

� LRU uses past information, while OPT uses future information

� When does LRU work well, and when does it not?

� Implementation
� Every time a page is accessed, record a timestamp of the

access time
� When choosing a page to evict, scan over all pages and

throw out page with oldest timestamp

� Problems with this implementation?
� 32-bit timestamp would double size of PTE
� Scanning all of the PTEs for lowest timestamp: slow 57

Least Recently Used (LRU)
� Keep track of when a page is used
� Replace the page that has been used least

recently

58

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used (LRU)
� Keep track of when a page is used
� Replace the page that has been used least

recently (farthest in the past)

59

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a

b b b b

c c c c

d d d d

X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used (LRU)
� Keep track of when a page is used
� Replace the page that has been used least

recently (farthest in the past)

60

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a a a a a

b b b b b b b b

c c c c e e e e

d d d d d d d d

X X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used (LRU)
� Keep track of when a page is used
� Replace the page that has been used least

recently (farthest in the past)

61

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a a a a a a

b b b b b b b b b

c c c c e e e e e

d d d d d d d d c

X X X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used (LRU)
� Keep track of when a page is used
� Replace the page that has been used least

recently (farthest in the past)

62

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a a a a a a a

b b b b b b b b b b

c c c c e e e e e d

d d d d d d d d c c

X X X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used Issues
� Not optimal
� Does not suffer from Belady's anomaly
� Implementation

� Use time of last reference
� Update every time page accessed (use system clock)
� Page replacement - search for smallest time

� Use a stack � Use a stack
� On page access : remove from stack, push on top
� Victim selection: select page at bottom of stack

� Both approaches require large processing overhead, more
space, and hardware support.

Copyright ©: University of Illinois CS 241 Staff 63

Approximating LRU
� Use the PTE reference bit and a small counter per page

� (Use a counter of, say, 2 or 3 bits in size, and store it in the PTE)

� Periodically (say every 100 msec), scan all physical pages
in the system
� If the page has not been accessed (PTE reference bit == 0),

increment (or shift right) the counter
� If the page has been accessed (reference bit == 1), set counter to � If the page has been accessed (reference bit == 1), set counter to

zero (or shift right)
� Clear the PTE reference bit in either case!

� Counter will contain the number of scans since the last
reference
to this page.
� PTE that contains the highest counter value is the least recently

used
� So, evict the page with the highest counter

64

Approximate LRU Example

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tim
e

Accessed pages
in blue

0 1 1 1 0 0 1 1 0 1 0 1 1 0 0
Increment counter
for untouched pages

65

0 1 1 1 0 0 1 1 0 1 0 1 1 0 0

0 2 0 0 0 1 2 2 0 0 1 0 2 1 0
These pages have
the highest counter
value and can be
evicted.

Algorithm: LRU Second-Chance (Clock)

� LRU requires searching for the page with the highest last-
ref count
� Can do this with a sorted list or a second pass to look for the

highest value

� Simpler technique: Second-chance algorithm
� “Clock hand” scans over all physical pages in the system

� Clock hand loops around to beginning of memory when it gets to end� Clock hand loops around to beginning of memory when it gets to end

� If PTE reference bit == 1, clear bit and advance hand to give it a
second-chance

� If PTE reference bit == 0, evict this page
� No need for a counter in the PTE!

66Clock hand

Accessed pages
in blue

Evict!

Algorithm: LRU Second-Chance (Clock)

� This is a lot like LRU, but operates in an iterative
fashion
� To find a page to evict, just start scanning from current

clock hand position
� What happens if all pages have ref bits set to 1?
� What is the minimum “age” of a page that has the ref bit � What is the minimum “age” of a page that has the ref bit

set to 0?

� Slight variant -- “nth chance clock”
� Only evict page if hand has swept by N times
� Increment per-page counter each time hand passes

and ref bit is 0
� Evict a page if counter >= N
� Counter cleared to 0 each time page is used

67

Swap Files

� What happens to the page that we choose
to evict?
� Depends on what kind of page it is and what

state it's in!

� OS maintains one or more swap files or
partitions on disk
� Special data format for storing pages that have

been swapped out

68

Swap Files
� How do we keep track of where things are on disk?

� Recall PTE format
� When V bit is 0, can recycle the PFN field to remember something

about the page.

Swap file offsetSwap file index0

5 bits 24 bitsV bit

� But ... not all pages are swapped in from swap files!
� E.g., what about executables?

69

Swap file table
(max 32 entries)

Swap file (max 2^24 pages = 64 GB)

Page Eviction
� How we evict a page depends on its type.
� Code page:

� Just remove it from memory – can recover it from the executable
file on disk!

� Unmodified (clean) data page:
� If the page has previously been swapped to disk, just remove it

from memoryfrom memory
� Assuming that page's backing store on disk has not been overwritten

� If the page has never been swapped to disk, allocate new swap
space and write the page to it

� Exception: unmodified zero page – no need to write out to swap at
all!

� Modified (dirty) data page:
� If the page has previously been swapped to disk, write page out to

the swap space
� If the page has never been swapped to disk, allocate new swap

space and write the page to it 70

Physical Frame Allocation
� How do we allocate physical memory across multiple

processes?
� What if Process A needs to evict a page from Process B?
� How do we ensure fairness?
� How do we avoid having one process hogging the entire memory

of the system?

� Local replacement algorithms
� Per-process limit on the physical memory usage of each process
� When a process reaches its limit, it evicts pages from itself

� Global-replacement algorithms
� Physical size of processes can grow and shrink over time
� Allow processes to evict pages from other processes

� Note that one process' paging can impact performance of
entire system!
� One process that does a lot of paging will induce more disk I/O

71

Working Set
� A process's working set is the set of pages that it currently

“needs”
� Definition:

� WS(P, t, w) = the set of pages that process P accessed in the time
interval [t-w, t]

� “w” is usually counted in terms of number of page references
� A page is in WS if it was referenced in the last w page references

� Working set changes over the lifetime of the process
� Periods of high locality exhibit smaller working set
� Periods of low locality exhibit larger working set

� Basic idea: Give process enough memory for its working
set
� If WS is larger than physical memory allocated to process, it will

tend to swap
� If WS is smaller than memory allocated to process, it's wasteful
� This amount of memory grows and shrinks over time

72

Estimating the Working Set
� How do we determine the working set?
� Simple approach: modified clock algorithm

� Sweep the clock hand at fixed time intervals
� Record how many seconds since last page reference
� All pages referenced in last T seconds are in the working set

� Now that we know the working set, how do we allocate
memory?memory?
� If working sets for all processes fit in physical memory, done!
� Otherwise, reduce memory allocation of larger processes

� Idea: Big processes will swap anyway, so let the small jobs run
unencumbered

� Very similar to shortest-job-first scheduling: give smaller processes
better chance of fitting in memory

� How do we decide the working set time limit T?
� If T is too large, very few processes will fit in memory
� If T is too small, system will spend more time swapping

� Which is better?
73

Page Fault Frequency
� Dynamically tune memory size of process

based on # page faults
� Monitor page fault rate for each process

(faults per sec)
� If page fault rate above threshold, give � If page fault rate above threshold, give

process more memory
� Should cause process to fault less
� Doesn't always work!

� Recall Belady's Anomaly

� If page fault rate below threshold, reduce
memory allocaton

74

Thrashing
� As system becomes more loaded, spends more of its time paging

� Eventually, no useful work gets done!

C
P

U
 u

til
iz

at
io

n

Thrashing

� System is overcommitted!
� If the system has too little memory, the page replacement algorithm

doesn't matter

� Solutions?
� Change scheduling priorities to “slow down” processes that are thrashing
� Identify process that are hogging the system and kill them?

� Is thrashing a problem on systems with only one user? 75

Number of processes

C
P

U
 u

til
iz

at
io

n

Allocation of Page Frames
� Scenario

� Several physical pages allocated to processes A, B,
and C. Process B page faults.

� Which page should be replaced?

� Allocating memory across processes?
� Does every process get the same fraction of memory? � Does every process get the same fraction of memory?
� Different fractions?
� Should we completely swap some processes out of

memory?

Copyright ©: University of Illinois CS 241 Staff 76

Allocation of Page Frames
� Each process needs minimum number of pages

� Want to make sure that all processes that are loaded
into memory can make forward progress

� Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
� Instruction is 6 bytes, might span 2 pages
� 2 pages to handle from
� 2 pages to handle to

Copyright ©: University of Illinois CS 241 Staff 77

Fixed Allocation
� Allocate a minimum number of frames per process
� Consider minimum requirements

� One page from the current executed instruction
� Most instructions require two operands
� Include an extra page for paging out and one for paging

inin

Copyright ©: University of Illinois CS 241 Staff 78

Equal Allocation
� Allocate an equal number of frames per job

� Example
� 100 frames
� 5 processes
� Each process gets 20 frames

� Issues� Issues
� But jobs use memory unequally
� High priority jobs have same number of page frames

and low priority jobs
� Degree of multiprogramming might vary

Copyright ©: University of Illinois CS 241 Staff 79

Proportional Allocation
� Allocate a number of frames per job proportional

to job size
� How do you determine job size

� Run command parameters ?
� Dynamically?

� Priority Allocation� Priority Allocation
� May want to give high priority process more memory

than low priority process
� Use a proportional allocation scheme using priorities

instead of size

Copyright ©: University of Illinois CS 241 Staff 80

Allocation of Page Frames
� Possible Replacement Scopes

� Local replacement
� Each process selects from only its own set of allocated frames
� Process slowed down even if other less used pages of memory

are available

� Global replacement
Process selects replacement frame from set of all frames� Process selects replacement frame from set of all frames

� One process can take a frame from another
� Process may not be able to control its page fault rate.

Copyright ©: University of Illinois CS 241 Staff 81

Is paging enough?

Stack

(Reserved for OS)

How do we allocate memory in here?

82

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

Physical RAM

MMU

Memory allocation w/in a process
� Is paging enough?
� What happens when you declare a variable?

� Allocating a page for every variable wouldn’t be efficient
� Allocations within a process are much smaller
� Need to allocate on a finer granularity

Solution (stack):� Solution (stack):
� Function calls follow LIFO semantics
� So we can use a stack data structure to represent the

process’s stack

� Solution (heap):
� This is a much harder problem
� Need to deal with fragmentation

83

Challenge of heap allocation

Stack

Heap

Uninitialized vars
(BSS segment)

(Reserved for OS)

� Problem: program can issue arbitrary sequence of allocation and free
requests
� Can lead to external fragmentation

84

Initialized vars
(data segment)

Code
(text segment)

Challenges of heap allocation
� Can’t control number or size of requested blocks
� Must respond immediately to all allocation requests

� i.e., can’t reorder or buffer requests

� Must allocate blocks from free memory
� i.e., can only place allocated blocks in free memory

� Must align blocks so they satisfy all alignment
requirements
� 8 byte alignment for GNU malloc (libc malloc) on Linux boxes

� Can only manipulate and modify free memory
� Can’t move the allocated blocks once they are allocated

� i.e., compaction is not allowed

85

Performance Goals: Allocation overhead
� Want our memory allocator to be fast!

� Minimize the overhead of both allocation and deallocation operations.

� One useful metric is throughput:
� Given a series of allocate or free requests
� Maximize the number of completed requests per unit time

� Example:
� 5,000 malloc calls and 5,000 free calls in 10 seconds
� Throughput is 1,000 operations/second.� Throughput is 1,000 operations/second.

� Note that a fast allocator may not be efficient in terms of memory
� utilization.

� Faster allocators tend to be “sloppier”
� To do the best job of space utilization, operations must take more time.
� Trick is to balance these two conflicting goals.

86

Performance Goals: Memory Utilization
� Allocators rarely do a perfect job of managing

memory.
� Usually there is some “waste” involved in the

process.

� Examples of waste...
� Extra metadata or internal structures used by the

allocator itself

� (example: Keeping track of where free memory

87

� (example: Keeping track of where free memory
is located)
� Chunks of heap memory that are unallocated

(fragments)

� We define memory utilization as...
� The total amount of memory allocated to the

application divided by the total heap size

� Ideally, we'd like utilization to be to 100%
� In practice this is not possible, but would be

good to get close.

Conflicting performance goals
� Note that good throughput and good utilization are

difficult to
� achieve simultaneously.
� A fast allocator may not be efficient in terms of

memory utilization.
Faster allocators tend to be “sloppier” with their � Faster allocators tend to be “sloppier” with their
memory usage.

� Likewise, a space-efficient allocator may not be
very fast
� To keep track of memory waste (i.e., tracking

fragments), the allocation operations generally take
longer to run.

� Trick is to balance these two conflicting goals. 88

Implementation Issues

� How do we know how much memory to free
just given a pointer?

� How do we keep track of the free blocks?
� What do we do with the extra space when � What do we do with the extra space when

allocating a memory block that is smaller
than the free block it is placed in?

� How do we pick which free block to use for
allocation?

89

Knowing how much to free
� Standard method

� Keep the length of the block in the header preceding
the block

� Requires an extra word for every allocated block

90

Keeping Track of Free Blocks
� One of the biggest jobs of an allocator is knowing

where the free memory is.
� The allocator's approach to this problem affects...

� Throughput – time to complete a malloc() or free()
� Space utilization – amount of extra metadata used to

track location of free memory.track location of free memory.

� There are many approaches to free space
management.
� Next, we will talk about one: Implicit free lists.

91

Implicit Free List
� Idea: Each block contains a header with some extra information.
� Allocated bit indicates whether block is allocated or free.
� Size field indicates entire size of block (including the header)
� Trick: Allocation bit is just the high-order bit of the size word
� For this lecture, let's assume the header size is 1 byte.
� Makes the pictures that I'll show later on easier to understand.
� This means the block size is only 7 bits, so max. block size is 127 � This means the block size is only 7 bits, so max. block size is 127

bytes (2^7-1).
� Clearly a real implementation would want to use a larger header (e.g.,

4 bytes).

92

Implicit Free List

� No explicit structure tracking location of free/allocated
blocks.

Rather, the size word (and allocated bit) in each block form an � Rather, the size word (and allocated bit) in each block form an
implicit “block list”

� How do we find a free block in the heap?
� Start scanning from the beginning of the heap.
� Traverse each block until (a) we find a free block and (b)

the block is large enough to handle the request.
� This is called the first fit strategy.

� Could also use next fit, best fit, etc
93

Implicit list: Allocating a Block
� Splitting free blocks

� Since allocated space might be smaller than free
space, we may need to split the free block that we're
allocating within

94

Implicit List: Freeing a Block

� Simplest implementation:
� Only need to clear allocated flag
� void free_block(ptr p) { *p = *p & ~1}

� But can lead to “false fragmentation”

� There’s enough free space, but allocator
won’t find it!

95

16 816 8

free(p) p

16 16 8

16

16 8

malloc(20)
Oops!

Implicit List: Coalescing

� Join (coalesce) with next and previous block
if they are free
� Coalescing with next block

16 816 816

� But how do we coalesce with previous
block?

96

16 816 8

free(p) p

16 16 8

16

824

Implicit List: Bidirectional Coalescing

� Boundary tags [Knuth73]
� Replicate size/allocated word at tail end of all blocks
� Allows us to traverse “list” backwards, but requires

extra space
� Important and general technique!

size

1 word

a
Header

97

size

Format of
allocated and
free blocks

payload and
padding

a = 1: allocated block
a = 0: free block

size: total block size

payload: application data
(allocated blocks only)

a

size aBoundary tag
(footer)

16 16 16 16 24 1624 16

Implicit Lists: Summary
� Implementation: very simple
� Allocate: linear-time worst case
� Free: constant-time worst case—even with

coalescing
� Memory usage: will depend on placement policy

� First, next, or best fit� First, next, or best fit

� Not used in practice for malloc/free because of
linear-time allocate, but used in some special-
purpose applications

� However, concepts of splitting and boundary tag
coalescing are general to all allocators

98

Alternative: Explicit Free Lists

� Use data space for link pointers
� Typically doubly linked
� Still need boundary tags for coalescing

� Links aren’t necessarily in same order as
blocks!

99

16 16 16 16 2424 1616 16 16

Forward links

Back links

A B

C

Freeing with Explicit Free Lists

� Insertion policy: Where in free list to put
newly freed block?
� LIFO (last-in-first-out) policy

� Insert freed block at beginning of free list
� Pro: simple, and constant-time
� Con: studies suggest fragmentation is worse than

address-ordered

� Address-ordered policy
� Insert freed blocks so list is always in address order

� i.e. addr(pred) < addr(curr) < addr(succ)

� Con: requires search (using boundary tags)
� Pro: studies suggest fragmentation is better than

LIFO 100

Keeping Track of Free Blocks
� Method 1: Implicit list using lengths -- links

all blocks

� Method 2: Explicit list among the free blocks
using pointers within the free blocks

20 16 824

using pointers within the free blocks

� Method 3: Segregated free list
� Different free lists for different size classes
� We’ll talk about this one next

101

20 16 824

Segregated Storage

� Each size class has its own collection of
blocks

4-8

12

16

� Often separate size class for every small size (8, 12, 16, …)

� For larger, typically have size class for each power of 2

102

16

20-32

36-64

Buddy Allocators

� Special case of segregated fits
� Basic idea:

� Limited to power-of-two sizes
� Can only coalesce with "buddy", who is other

half of next-higher power of twohalf of next-higher power of two

� Clever use of low address bits to find
buddies

� Problem: large powers of two result in large
internal fragmentation (e.g., what if you
want to allocate 65537 bytes?)

103

Buddy System Example

128 Free

Copyright ©: University of Illinois CS 241 Staff 104

Buddy System Example

128 Free

Process A requests 16

64 Free 64 Free

Copyright ©: University of Illinois CS 241 Staff 105

64 Free 64 Free

32 Free 32 Free

16 A 16 Free 32 Free

64 Free

64 Free

Buddy System Example

128 Free

Process B requests 32

16 A 16 Free 32 Free 64 Free32 B

Copyright ©: University of Illinois CS 241 Staff 106

Buddy System Example

128 Free

Process C requests 8

16 A 16 Free 32 B 64 Free

16 A
8
C

32 B 64 Free8

Copyright ©: University of Illinois CS 241 Staff 107

16 A
C

32 B 64 Free8

Buddy System Example

Process A exits

16 Free
8
C

32 B 64 Free8

Copyright ©: University of Illinois CS 241 Staff 108

Buddy System Example

Process C exits

16 Free 8 32 B 64 Free8

16 Free 32 B 64 Free16 Free

� Advantage
� Minimizes external fragmentation

� Disadvantage
� Internal fragmentation when not 2^n request

Copyright ©: University of Illinois CS 241 Staff 109

16 Free 32 B 64 Free16 Free

32 B 64 Free32 Free

