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Memory   



Address Spaces and Memory 

 Process 

 One or more thread 

 One address space 

 Thread 

 Stream of execution 

 Unit of concurrency 

 Address space 

 Memory space that threads use 

 Unit of data 
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Address Space Abstraction 

 Address space 

 All memory data 

 i.e., program code, stack, data segment 

 

 Hardware interface (physical reality) 

 Computer has one small, shared memory 

 Application interface (illusion) 

 Each process wants private, large memory 
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Address Space Illusions 

 Address independence 

 

 Protection 

 

 Virtual memory 
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Address Space 
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Code segment 

Data segment 

Heap 

Stack 

0xffffffffffffffff 

0x0 
fixed size 

fixed size 

grows  

dynamically 

grows  

dynamically 



Uni-programming 

 1 process runs at a time 

 Always load process into 

the same spot 

 How do you switch 

processes? 

 What illusions does this 

provide? 

 Independence, protection, 

virtual memory? 

 Problems? 
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User  

Program 

Operating 

Systems in 

ROM 

0 



Multi-Programming 

 Multiple processes in memory at the same 

time 

 What if there are more processes than what 

could fit into the memory? 

 Swapping 

 Memory allocation changes as  

 Processes come into memory 

 Processes leave memory 

 Swapped to disk 

 Complete execution 
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Swapping 
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Monitor 

Disk 

User 

Partition 



Swapping 
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Swapping 
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Swapping 
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Partition 



Swapping 
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Swapping 
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Swapping 
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Example 

 Consider a system in which memory 

consists of the following hole sizes in 

memory order:  

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.  

 Which hole is taken for successive requests of:   

 12K   

 10K   

 9K  
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Example 

 Consider a system in which memory 

consists of the following hole sizes in 

memory order:  

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.  

 Which hole is taken for successive requests of:   

 12K   

 10K   

 9K  
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First fit: 

20K, 10K, 

18K.    

Best fit: 

12K, 10K, 

9K. 

Worst fit: 

20K, 18K, 

and 15K.  



Storage Placement Strategies 

 Best fit 

 Produces the smallest leftover hole 

 Creates small holes that cannot be used  

 Worst Fit 

 Produces the largest leftover hole 

 Difficult to run large programs  

 First Fit 

 Creates average size holes  

 

 First-fit and best-fit better than worst-fit in terms of 

speed and storage utilization 
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Fragmentation 

 External Fragmentation  

 Memory space exists to satisfy a request, 

but it is not contiguous 

 Internal Fragmentation  

 Allocated memory may be slightly larger 

than requested memory 

 The size difference is memory internal to 

a partition, but not being used 
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Compaction 

 Reduce external fragmentation by 

compaction 

 Shuffle memory contents to place all free 

memory together in one large block 

 Compaction is possible only if relocation 

is dynamic, and is done at execution time 
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Solve Fragmentation w. 

Compaction 
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Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8 

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9 



Limitations of Swapping 

 Problems with swapping 

 Process must fit into physical memory 

(impossible to run larger processes) 

 Memory becomes fragmented 

 Processes are either in memory or on disk 

 Half and half doesn’t do any good 
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Virtual memory 

 Basic idea 
 Allow the OS to hand out more memory than 

exists on the system 

 Keep recently used stuff in physical memory 

 Move less recently used stuff to disk 

 Keep all of this hidden from processes 

 Process view 
 Processes still see an address space from 0 – 

max address 

 Movement of information to and from disk 
handled by the OS without process help 
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Multi-programming 

 Multiple processes in memory at the 

same time 

 What do we really need? 

 Address translation 

 Protection 

Copyright ©: University of Illinois CS 241 Staff 26 



Address Translation 

 Goals 

 Avoid conflicting addresses 

 Approaches 

 Static 

 Translate before you execute 

 Dynamic 

 Translate during execution, could change 
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Dynamic Translation 

 Translate every memory reference 

from virtual address to physical 

address 

 Virtual address 

 An address viewed by the user process 

 Physical address 

 An address viewed by the physical memory 
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Virtual Addresses 

 Different jobs run at different addresses 

 Program never sees physical address 

 At link-time 

 Linker must know program’s starting memory address 

 Correct starting address when a program starts 

in memory  
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Dynamic Address Translation 

 Translation enforces protection 

 One process can’t even refer to another process’s address 
space 

 Translation enables virtual memory 

 A virtual address only needs to be in physical memory when it 
is being accessed 

 Change translations on the fly as different virtual addresses 
occupy physical memory 

User 

process 

Translator 

(MMU) 

Physical 

memory 
Virt  
addr 

Phys  
addr 
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Dynamic Address Translation 

 Implementation tradeoffs 
 Flexibility (e.g., sharing, growth, virtual memory) 

 Size of translation data 

 Speed of translation 

User 

process 

Translator 

(MMU) 

Physical 

memory 

Copyright ©: University of Illinois CS 241 Staff 31 

Virt  
addr 

Phys  
addr 



Dynamic Address Translation 

 Load each process into contiguous regions of 

physical memory 

 

 Logical or "Virtual"  

addresses 

 Logical address  

space 

 Range: 0 to max 

 

 

 

 Physical addresses 

 Physical address space 

 Range: R+0 to R+max 

for base value R 
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Base Register 
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MMU 

Memory 

Base Register 

CPU  

Instruction 

Address 

+ 

BA 

MA MA+BA 

Physical 

Address 
Logical 

Address 

Base Address 

Base: start of the process’s memory partition 



Base Register 
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MMU 

Memory 

Base Register 

CPU  

Instruction 

Address 

+ 

14000 

346 14346 

Physical 

Address 
Logical 

Address 

Base Address 

Base: start of the process’s memory partition 



Protection 

 Problem 

 How to prevent a malicious process from 

writing or jumping into other user's or OS 

partitions 

 Solution 

 Base bounds registers  
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Base and bounds 

if (virt addr > bound) 

    trap to kernel 

} else { 

    phys addr =  

   virt addr + base 

} 

 

Copyright ©: University of Illinois CS 241 Staff 36 

physical   

memory 

physical   

memory 

size 

base + bound 

base 
bound 

virtual 

memory 

0 0 



Base and bounds 
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Memory 

Bounds Register Base Register 

CPU 

Address 
< + 

Memory 

Address 

MA 

Logical 

Address LA 

Physical 

Address 

PA 

Fault 

Base Address 

Bound  

Address 

MA+BA 

Base 

Address 

BA 

Base: start of the process’s memory partition 
Bound: length of the process’s memory partition 



Base and bounds 

 What must change during a context switch? 

 

 Can a proc change its own base and 

bound? 

 

 

 

 Can you share memory with another 

process? 
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Base and bounds 

 How does the kernel handle the 

address space growing? 

 You are the OS designer, come up with 

an algorithm for allowing processes to 

grow 
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Segmentation 

 Segment 

 Region of contiguous memory 

 Segmentation 

 Generalized base and bounds with 

support for multiple segments at once 
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Segmentation 

 Segments are specified 

many different ways 

 What are the advantages 

over base and bounds? 

 What must be changed on 

context switch? 
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code 

stack 

data code 

stack 

data 

physical 

memory 

virtual 

memory 

segment 3 

Virtual 

memory 

segment 1 

Virtual 

memory 

segment 0 

0 

0 

0 

0 

fff 

4ff 

6ff 

0 

4ff 

2000 

2fff 

4000 

46ff 

Seg # Base Bound Description 

0 4000 700 Code segment 

1 0 500 Data segment 

2 Unused 

3 2000 1000 Stack 

segment 



Problem with Segmentation 

and B&B 

 What was the key abstraction not supported 

well by segmentation and by B&B? 

 How could you support this using B&B and 

segmentation? 

 

 Note: x86 used to support segmentation, 

now effectively deprecated with x86-64 
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Paging 

 Allocate physical memory in terms of fixed-

size chunks 

 Fixed unit makes it easier to allocate 

 Any free physical page can store any virtual 

page 

 Virtual address 

 Virtual page # (high bits of address) 

 Offset (low bits of address, e.g., bits 11-0 for 4k 

page) 
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Translation Table 

Virtual page # Physical page # 

0 10 

1 15 

2 20 

3 invalid 

… invalid 

1048575 invalid 
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Translation Process 

if (virtual page is invalid or non-resident or 

protected) { 

    trap to OS fault handler 

} else { 

    physical page # = pageTable[virtpage#] 

                        .physPageNum 

} 

 What must change on a context switch? 

 

 Each virtual page can be in physical memory or 
swapped out to disk (called paged) 
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Paging 

 How does the processor know that a 

virtual page is not in memory? 

 

 

 Like segments, pages can have 

different protections 

 Read, write, execute 
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Valid vs. Resident 

 Resident  

 Virtual page is in memory 

 NOT an error for a program to access 

non-resident page 

 Valid  

 Virtual page is legal for the program to 

access 

 e.g., part of the address space 
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Valid vs. Resident 

 Who makes a page resident/non-resident? 

 

 Who makes a virtual page valid/invalid? 

 

 Why would a process want one if its virtual 

pages to be invalid? 
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Valid vs. Resident 

 Who makes a page resident/non-resident? 

 OS memory manager 

 Who makes a virtual page valid/invalid? 

 User actions 

 Why would a process want one if its virtual 

pages to be invalid? 

 Avoid accidental memory references to bad 

locations 
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Address Translation Scheme 

 Address generated by CPU is divided into 

 Page number (p)  
 An index into a page table  

 Contains base address of each  

page in physical memory 

 Page offset (d)  
 Combined with base address  

 Defines the physical memory  

address that is sent to the  

memory unit 

 

For given logical address space 2m and page size 2n 
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P1 P2 D 

Page  

Number 

Page 

Offset 

m - n n 



Page Mapping Hardware 
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P D 

P  F 

0 
1 
0 
1 
1 
0 
1 

Page Table 

Virtual Memory 

Physical Memory 

Physical Address (F,D) 

P 

F 

D 

D 

P 

F D 

Contents(F,D) 

Contents(P,D) 

Virtual Address  

 (P,D) 



Page Mapping Hardware 
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Contents(4006) 

Contents(5006) 

004 006 

005 006 

4  5 

0 
1 
0 
1 
1 
0 
1 

Page Table 

Virtual Memory 

Physical Memory 

Virtual Address  

(004006) 

Physical Address (F,D) 

004 

005 

006 

006 

4 

Page size 1000 

Number of Possible Virtual Pages 1000 

Number of Page Frames 8 



Page Faults 

 What happens when a program accesses a virtual 

page that is not mapped into any physical page? 

 Hardware triggers a page fault 

 Page fault handler 

 Find any available free physical page 

 If none, evict some resident page to disk 

 Allocate a free physical page 

 Load the faulted virtual page to the prepared physical 

page 

 Modify the page table 
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Paging 

 Paging is how an OS achieves VM 

 Goal 

 Provide user with virtual memory that is as big 

as user needs 

 Implementation 

 Store virtual memory on disk 

 Cache parts of virtual memory being used in real 

memory 

 Load and store cached virtual memory without 

user program intervention 
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Paging Request 
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3 1 

2 

3 

4 

Disk 

Cache 

Virtual Memory Stored on Disk 
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1 

2 

3 

4 

Page Table 

VM Frame 
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Virtual Memory Page 3 



Paging Request 
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Paging Request 
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Paging Request 
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Paging Request 
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is no more space in the 

cache? 



Paging Request 
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1 
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Paging Request 
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3 1 

6 
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Disk 
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3 
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VM Frame 

Real Memory Process request for Address  
within Virtual Memory Page 8 



Paging Request 
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3 1 

8 

6 

2 
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Paging Issues 

 Page size 

 Typically 2n 

 usually 512, 1k, 2k, 4k, or 8k 

 Example  

 32 bit VM address may have  220 (1 meg) 

pages with 4k (212) bytes per page 

 220 (1 meg) 32 bit page entries take 222 bytes 

(4 meg) 

 Page frames must map into real memory 

Copyright ©: University of Illinois CS 241 Staff 64 



Paging Issues 

 Physical memory size:  32 MB (225)  

 Page size 4K bytes 

 How many pages?       

 213 

 NO external fragmentation 

 Internal fragmentation on last page ONLY  
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Discussion 

 How can paging be made faster? 

 Mapping must be done for every reference 

 More memory = more pages! 

 Hardware registers (one per page) 

 Keep page table in memory 

 Is one level of paging sufficient? 

 Sharing and protections? 
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Multi-level Translation 

 Standard page table is a simple array 
 Might take huge amounts of memory for sparse 

address space. 
 32 bit address space (4KB pages): 220 * 4 = 4 MB 

 64 bit address space (4KB pages): 252 * 8 = 32 PB! 

 Multi-level translation changes this into a tree 

 

 E.g., two-level page table on 32 bit machine 
 Level 1 – virtual address bits 31-22 index 

 Level 2 – virtual address bits 21-12 index 

 Offset: bits 11-0 (4KB page) 
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Multilevel Paging and 

Performance 

 Each level is stored as a separate 

table in memory 

 Converting a logical address to a physical 

one with a three-level page table may 

take four memory accesses 

 Why? 
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Addressing on Two-Level 

Page Table 

 32-bit Architecture 

 4096= 212 B Page 

 4K Page of Logical Memory  

 4096 addressable bytes 

 Page the Page Table  

 4K pages as well  

 1024 addressable 4byte addresses 
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P1 P2 D 

Page  

Number 

Page 

Offset 

12 10 10 



Two-Level Page-Table 
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Problem (from Tanenbaum) 

 A computer with a 32-bit address uses 

a two-level page table.  Virtual 

addresses split into a 9-bit top-level 

page table field, an 11-bit second-level 

page table field, and an offset.  How 

large are the pages and how many are 

there in the address space? 
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Problem 

 Assume single-level page table 

 Page table entry 

 Top 20 bits for physical address 

 Bottom 12 for permissions, etc. 

 Just like x86 page table entries 

 Write a function, translate, that 

converts a virtual address to a physical 

address 
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Return the physical address 

ulong translate(ulong va, pte_t *pt) { 

 

 

 

 

 

} 
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Discussion 

 How can paging be made faster? 

 Mapping must be done for every reference 

 2 level page table, 3 memory ops per each load/store 
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Paging - Caching the Page 

Table 

 Cache page table entries in registers 

 Called a translation lookaside buffer 

 i.e., TLB   

 Keep page table in memory  

 Location given by a page table base 

register 

 Page table base register changed at 

context switch time 
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Sharing Pages 

 Shared code 

 One copy of read-only code shared (e.g., libraries) among 

processes (e.g., text editors, compilers, web browsers). 

 

 Private code and data  

 Each process keeps a separate copy of the code and data 
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Shared Pages 

81 Copyright ©: University of Illinois CS 241 Staff 



Page Protection 

 Can add read, write, execute protection bits to page 

table to protect memory 

 Check is done by hardware during access 

 Can give shared memory location different protections 

from different processes by having different page table 

protection access bits 

 Valid-invalid bit attached to each entry in the page 

table 

 “valid” indicates that the associated page is in the process’ 

logical address space 

 “invalid” indicates that the page is not in the process’ 

logical address space 
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Page Protection  
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 Reference  page has been accessed 

 Valid   page exists 

 Resident  page is cached in primary 

   memory 

 Dirty   page has changed 

   since page in  

D R V Reference 

Dirty Resident Valid 

W E Re 

Execute Write Read 



Demand Paging 

 Never bring a page into primary memory until its 

needed 

 Fetch Strategies  

 When should a page be brought into primary (main) 

memory from secondary (disk) storage.  

 Placement Strategies 

 When a page is brought into primary storage, where 

should it be put?  

 Replacement Strategies 

 Which page now in primary storage should be removed 

from primary storage when some other page or segment 

needs to be brought in and there is not enough room 
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Issue: Eviction 

 Hopefully, kick out a less-useful page 

 Dirty pages require writing, clean pages don’t 

 Where do you write? To “swap space” 

 Goal: kick out the page that’s least useful 

 Problem: how do you determine utility? 

 Heuristic: temporal locality exists 

 Kick out pages that aren’t likely to be used again 
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Principal of Optimality  

 Definition 

 Each page is labeled with the number of instructions that 

will be executed before that page is first referenced 

 The optimal page replacement algorithm: choose the page 

with the highest label to be removed from the memory.  

 Impractical: requires knowledge of future references 

 If future references are known 

 should use pre paging to allow paging to be overlapped 

with computation.  
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Page Replacement Strategies 

 Random page replacement  

 Choose a page randomly  

 FIFO - First in First Out  

 Replace the page that has 

been in primary memory 

the longest  

 LRU - Least Recently Used  

 Replace the page that has 

not been used for the 

longest time  

 LFU - Least Frequently 

Used  

 Replace the page that is 

used least often  

 NRU - Not Recently Used  

 An approximation to LRU.  

 Working Set  

 Keep in memory those 

pages that the process is 

actively using.  
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Benefits of Virtual Memory 

 Especially helpful in multiprogrammed system 

 CPU schedules process B while process A waits for its 

memory to be retrieved from disk 

 Use secondary storage($) 

 Extend DRAM($$$) with reasonable performance 

 Protection 

 Programs do not step over each other 
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Benefits of Virtual Memory 

 Convenience 

 Flat address space 

 Programs have the same view of the world 

 Load and store cached virtual memory without user 

program intervention  

 Reduce fragmentation 

 Make cacheable units all the same size (page) 
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