

Copyright ©: University of Illinois CS 241 Staff 1

Memory

Address Spaces and Memory

 Process

 One or more thread

 One address space

 Thread

 Stream of execution

 Unit of concurrency

 Address space

 Memory space that threads use

 Unit of data

Copyright ©: University of Illinois CS 241 Staff 2

Address Space Abstraction

 Address space

 All memory data

 i.e., program code, stack, data segment

 Hardware interface (physical reality)

 Computer has one small, shared memory

 Application interface (illusion)

 Each process wants private, large memory

Copyright ©: University of Illinois CS 241 Staff 3

Address Space Illusions

 Address independence

 Protection

 Virtual memory

Copyright ©: University of Illinois CS 241 Staff 4

Address Space

Copyright ©: University of Illinois CS 241 Staff 6

Code segment

Data segment

Heap

Stack

0xffffffffffffffff

0x0
fixed size

fixed size

grows

dynamically

grows

dynamically

Uni-programming

 1 process runs at a time

 Always load process into

the same spot

 How do you switch

processes?

 What illusions does this

provide?

 Independence, protection,

virtual memory?

 Problems?

Copyright ©: University of Illinois CS 241 Staff 7

User

Program

Operating

Systems in

ROM

0

Multi-Programming

 Multiple processes in memory at the same

time

 What if there are more processes than what

could fit into the memory?

 Swapping

 Memory allocation changes as

 Processes come into memory

 Processes leave memory

 Swapped to disk

 Complete execution

Copyright ©: University of Illinois CS 241 Staff 9

Swapping

Copyright ©: University of Illinois CS 241 Staff 10

Monitor

Disk

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 11

Monitor

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 12

Monitor

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 13

Monitor

User 2

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 14

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 15

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 16

Monitor

Disk

User 1

User 2

User

Partition
User 1

Example

 Consider a system in which memory

consists of the following hole sizes in

memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 18

Example

 Consider a system in which memory

consists of the following hole sizes in

memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 19

First fit:

20K, 10K,

18K.

Best fit:

12K, 10K,

9K.

Worst fit:

20K, 18K,

and 15K.

Storage Placement Strategies

 Best fit

 Produces the smallest leftover hole

 Creates small holes that cannot be used

 Worst Fit

 Produces the largest leftover hole

 Difficult to run large programs

 First Fit

 Creates average size holes

 First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 20

Fragmentation

 External Fragmentation

 Memory space exists to satisfy a request,

but it is not contiguous

 Internal Fragmentation

 Allocated memory may be slightly larger

than requested memory

 The size difference is memory internal to

a partition, but not being used

Copyright ©: University of Illinois CS 241 Staff 21

Compaction

 Reduce external fragmentation by

compaction

 Shuffle memory contents to place all free

memory together in one large block

 Compaction is possible only if relocation

is dynamic, and is done at execution time

Copyright ©: University of Illinois CS 241 Staff 22

Solve Fragmentation w.

Compaction

Copyright ©: University of Illinois CS 241 Staff 23

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9

Limitations of Swapping

 Problems with swapping

 Process must fit into physical memory

(impossible to run larger processes)

 Memory becomes fragmented

 Processes are either in memory or on disk

 Half and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 24

Virtual memory

 Basic idea
 Allow the OS to hand out more memory than

exists on the system

 Keep recently used stuff in physical memory

 Move less recently used stuff to disk

 Keep all of this hidden from processes

 Process view
 Processes still see an address space from 0 –

max address

 Movement of information to and from disk
handled by the OS without process help

Copyright ©: University of Illinois CS 241 Staff 25

Multi-programming

 Multiple processes in memory at the

same time

 What do we really need?

 Address translation

 Protection

Copyright ©: University of Illinois CS 241 Staff 26

Address Translation

 Goals

 Avoid conflicting addresses

 Approaches

 Static

 Translate before you execute

 Dynamic

 Translate during execution, could change

Copyright ©: University of Illinois CS 241 Staff 27

Dynamic Translation

 Translate every memory reference

from virtual address to physical

address

 Virtual address

 An address viewed by the user process

 Physical address

 An address viewed by the physical memory

Copyright ©: University of Illinois CS 241 Staff 28

Virtual Addresses

 Different jobs run at different addresses

 Program never sees physical address

 At link-time

 Linker must know program’s starting memory address

 Correct starting address when a program starts

in memory

Copyright ©: University of Illinois CS 241 Staff 29

Dynamic Address Translation

 Translation enforces protection

 One process can’t even refer to another process’s address
space

 Translation enables virtual memory

 A virtual address only needs to be in physical memory when it
is being accessed

 Change translations on the fly as different virtual addresses
occupy physical memory

User

process

Translator

(MMU)

Physical

memory
Virt
addr

Phys
addr

Copyright ©: University of Illinois CS 241 Staff 30

Dynamic Address Translation

 Implementation tradeoffs
 Flexibility (e.g., sharing, growth, virtual memory)

 Size of translation data

 Speed of translation

User

process

Translator

(MMU)

Physical

memory

Copyright ©: University of Illinois CS 241 Staff 31

Virt
addr

Phys
addr

Dynamic Address Translation

 Load each process into contiguous regions of

physical memory

 Logical or "Virtual"

addresses

 Logical address

space

 Range: 0 to max

 Physical addresses

 Physical address space

 Range: R+0 to R+max

for base value R

Copyright ©: University of Illinois CS 241 Staff 32

Base Register

Copyright ©: University of Illinois CS 241 Staff 33

MMU

Memory

Base Register

CPU

Instruction

Address

+

BA

MA MA+BA

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

Base Register

Copyright ©: University of Illinois CS 241 Staff 34

MMU

Memory

Base Register

CPU

Instruction

Address

+

14000

346 14346

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

Protection

 Problem

 How to prevent a malicious process from

writing or jumping into other user's or OS

partitions

 Solution

 Base bounds registers

Copyright ©: University of Illinois CS 241 Staff 35

Base and bounds

if (virt addr > bound)

 trap to kernel

} else {

 phys addr =

 virt addr + base

}

Copyright ©: University of Illinois CS 241 Staff 36

physical

memory

physical

memory

size

base + bound

base
bound

virtual

memory

0 0

Base and bounds

Copyright ©: University of Illinois CS 241 Staff 37

Memory

Bounds Register Base Register

CPU

Address
< +

Memory

Address

MA

Logical

Address LA

Physical

Address

PA

Fault

Base Address

Bound

Address

MA+BA

Base

Address

BA

Base: start of the process’s memory partition
Bound: length of the process’s memory partition

Base and bounds

 What must change during a context switch?

 Can a proc change its own base and

bound?

 Can you share memory with another

process?

Copyright ©: University of Illinois CS 241 Staff 38

Base and bounds

 How does the kernel handle the

address space growing?

 You are the OS designer, come up with

an algorithm for allowing processes to

grow

Copyright ©: University of Illinois CS 241 Staff 40

Segmentation

 Segment

 Region of contiguous memory

 Segmentation

 Generalized base and bounds with

support for multiple segments at once

Copyright ©: University of Illinois CS 241 Staff 41

Segmentation

 Segments are specified

many different ways

 What are the advantages

over base and bounds?

 What must be changed on

context switch?

Copyright ©: University of Illinois CS 241 Staff 42

code

stack

data code

stack

data

physical

memory

virtual

memory

segment 3

Virtual

memory

segment 1

Virtual

memory

segment 0

0

0

0

0

fff

4ff

6ff

0

4ff

2000

2fff

4000

46ff

Seg # Base Bound Description

0 4000 700 Code segment

1 0 500 Data segment

2 Unused

3 2000 1000 Stack

segment

Problem with Segmentation

and B&B

 What was the key abstraction not supported

well by segmentation and by B&B?

 How could you support this using B&B and

segmentation?

 Note: x86 used to support segmentation,

now effectively deprecated with x86-64

Copyright ©: University of Illinois CS 241 Staff 43

Paging

 Allocate physical memory in terms of fixed-

size chunks

 Fixed unit makes it easier to allocate

 Any free physical page can store any virtual

page

 Virtual address

 Virtual page # (high bits of address)

 Offset (low bits of address, e.g., bits 11-0 for 4k

page)

Copyright ©: University of Illinois CS 241 Staff 44

Translation Table

Virtual page # Physical page #

0 10

1 15

2 20

3 invalid

… invalid

1048575 invalid

Copyright ©: University of Illinois CS 241 Staff 45

Translation Process

if (virtual page is invalid or non-resident or

protected) {

 trap to OS fault handler

} else {

 physical page # = pageTable[virtpage#]

 .physPageNum

}

 What must change on a context switch?

 Each virtual page can be in physical memory or
swapped out to disk (called paged)

Copyright ©: University of Illinois CS 241 Staff 46

Paging

 How does the processor know that a

virtual page is not in memory?

 Like segments, pages can have

different protections

 Read, write, execute

Copyright ©: University of Illinois CS 241 Staff 47

Valid vs. Resident

 Resident

 Virtual page is in memory

 NOT an error for a program to access

non-resident page

 Valid

 Virtual page is legal for the program to

access

 e.g., part of the address space

Copyright ©: University of Illinois CS 241 Staff 48

Valid vs. Resident

 Who makes a page resident/non-resident?

 Who makes a virtual page valid/invalid?

 Why would a process want one if its virtual

pages to be invalid?

Copyright ©: University of Illinois CS 241 Staff 49

Valid vs. Resident

 Who makes a page resident/non-resident?

 OS memory manager

 Who makes a virtual page valid/invalid?

 User actions

 Why would a process want one if its virtual

pages to be invalid?

 Avoid accidental memory references to bad

locations

Copyright ©: University of Illinois CS 241 Staff 50

Address Translation Scheme

 Address generated by CPU is divided into

 Page number (p)
 An index into a page table

 Contains base address of each

page in physical memory

 Page offset (d)
 Combined with base address

 Defines the physical memory

address that is sent to the

memory unit

For given logical address space 2m and page size 2n

Copyright ©: University of Illinois CS 241 Staff 51

P1 P2 D

Page

Number

Page

Offset

m - n n

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 52

P D

P F

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Physical Address (F,D)

P

F

D

D

P

F D

Contents(F,D)

Contents(P,D)

Virtual Address

 (P,D)

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 53

Contents(4006)

Contents(5006)

004 006

005 006

4 5

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Virtual Address

(004006)

Physical Address (F,D)

004

005

006

006

4

Page size 1000

Number of Possible Virtual Pages 1000

Number of Page Frames 8

Page Faults

 What happens when a program accesses a virtual

page that is not mapped into any physical page?

 Hardware triggers a page fault

 Page fault handler

 Find any available free physical page

 If none, evict some resident page to disk

 Allocate a free physical page

 Load the faulted virtual page to the prepared physical

page

 Modify the page table

Copyright ©: University of Illinois CS 241 Staff 54

Paging

 Paging is how an OS achieves VM

 Goal

 Provide user with virtual memory that is as big

as user needs

 Implementation

 Store virtual memory on disk

 Cache parts of virtual memory being used in real

memory

 Load and store cached virtual memory without

user program intervention

Copyright ©: University of Illinois CS 241 Staff 55

Paging Request

Copyright ©: University of Illinois CS 241 Staff 56

3 1

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 3

Paging Request

Copyright ©: University of Illinois CS 241 Staff 57

3 1

1 2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 1

Paging Request

Copyright ©: University of Illinois CS 241 Staff 58

3 1

1

6

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 6

Paging Request

Copyright ©: University of Illinois CS 241 Staff 59

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 2

Paging Request

Copyright ©: University of Illinois CS 241 Staff 60

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 8

What happens when there

is no more space in the

cache?

Paging Request

Copyright ©: University of Illinois CS 241 Staff 61

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Store Virtual Memory

Page 1 to disk

Paging Request

Copyright ©: University of Illinois CS 241 Staff 62

3 1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Process request for Address
within Virtual Memory Page 8

Paging Request

Copyright ©: University of Illinois CS 241 Staff 63

3 1

8

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Load Virtual Memory

Page 8 to cache

Paging Issues

 Page size

 Typically 2n

 usually 512, 1k, 2k, 4k, or 8k

 Example

 32 bit VM address may have 220 (1 meg)

pages with 4k (212) bytes per page

 220 (1 meg) 32 bit page entries take 222 bytes

(4 meg)

 Page frames must map into real memory

Copyright ©: University of Illinois CS 241 Staff 64

Paging Issues

 Physical memory size: 32 MB (225)

 Page size 4K bytes

 How many pages?

 213

 NO external fragmentation

 Internal fragmentation on last page ONLY

Copyright ©: University of Illinois CS 241 Staff 65

Discussion

 How can paging be made faster?

 Mapping must be done for every reference

 More memory = more pages!

 Hardware registers (one per page)

 Keep page table in memory

 Is one level of paging sufficient?

 Sharing and protections?

Copyright ©: University of Illinois CS 241 Staff 66

Multi-level Translation

 Standard page table is a simple array
 Might take huge amounts of memory for sparse

address space.
 32 bit address space (4KB pages): 220 * 4 = 4 MB

 64 bit address space (4KB pages): 252 * 8 = 32 PB!

 Multi-level translation changes this into a tree

 E.g., two-level page table on 32 bit machine
 Level 1 – virtual address bits 31-22 index

 Level 2 – virtual address bits 21-12 index

 Offset: bits 11-0 (4KB page)

Copyright ©: University of Illinois CS 241 Staff 67

Multilevel Paging and

Performance

 Each level is stored as a separate

table in memory

 Converting a logical address to a physical

one with a three-level page table may

take four memory accesses

 Why?

Copyright ©: University of Illinois CS 241 Staff 68

Addressing on Two-Level

Page Table

 32-bit Architecture

 4096= 212 B Page

 4K Page of Logical Memory

 4096 addressable bytes

 Page the Page Table

 4K pages as well

 1024 addressable 4byte addresses

Copyright ©: University of Illinois CS 241 Staff 69

P1 P2 D

Page

Number

Page

Offset

12 10 10

Two-Level Page-Table

70 Copyright ©: University of Illinois CS 241 Staff

Problem (from Tanenbaum)

 A computer with a 32-bit address uses

a two-level page table. Virtual

addresses split into a 9-bit top-level

page table field, an 11-bit second-level

page table field, and an offset. How

large are the pages and how many are

there in the address space?

Copyright ©: University of Illinois CS 241 Staff 73

Problem

 Assume single-level page table

 Page table entry

 Top 20 bits for physical address

 Bottom 12 for permissions, etc.

 Just like x86 page table entries

 Write a function, translate, that

converts a virtual address to a physical

address

Copyright ©: University of Illinois CS 241 Staff 75

Return the physical address

ulong translate(ulong va, pte_t *pt) {

}

Copyright ©: University of Illinois CS 241 Staff 76

Discussion

 How can paging be made faster?

 Mapping must be done for every reference

 2 level page table, 3 memory ops per each load/store

Copyright ©: University of Illinois CS 241 Staff 78

Paging - Caching the Page

Table

 Cache page table entries in registers

 Called a translation lookaside buffer

 i.e., TLB

 Keep page table in memory

 Location given by a page table base

register

 Page table base register changed at

context switch time

Copyright ©: University of Illinois CS 241 Staff 79

Sharing Pages

 Shared code

 One copy of read-only code shared (e.g., libraries) among

processes (e.g., text editors, compilers, web browsers).

 Private code and data

 Each process keeps a separate copy of the code and data

80 Copyright ©: University of Illinois CS 241 Staff

Shared Pages

81 Copyright ©: University of Illinois CS 241 Staff

Page Protection

 Can add read, write, execute protection bits to page

table to protect memory

 Check is done by hardware during access

 Can give shared memory location different protections

from different processes by having different page table

protection access bits

 Valid-invalid bit attached to each entry in the page

table

 “valid” indicates that the associated page is in the process’

logical address space

 “invalid” indicates that the page is not in the process’

logical address space

Copyright ©: University of Illinois CS 241 Staff 82

Page Protection

Copyright ©: University of Illinois CS 241 Staff 83

 Reference page has been accessed

 Valid page exists

 Resident page is cached in primary

 memory

 Dirty page has changed

 since page in

D R V Reference

Dirty Resident Valid

W E Re

Execute Write Read

Demand Paging

 Never bring a page into primary memory until its

needed

 Fetch Strategies

 When should a page be brought into primary (main)

memory from secondary (disk) storage.

 Placement Strategies

 When a page is brought into primary storage, where

should it be put?

 Replacement Strategies

 Which page now in primary storage should be removed

from primary storage when some other page or segment

needs to be brought in and there is not enough room

Copyright ©: University of Illinois CS 241 Staff 84

Issue: Eviction

 Hopefully, kick out a less-useful page

 Dirty pages require writing, clean pages don’t

 Where do you write? To “swap space”

 Goal: kick out the page that’s least useful

 Problem: how do you determine utility?

 Heuristic: temporal locality exists

 Kick out pages that aren’t likely to be used again

Copyright ©: University of Illinois CS 241 Staff 85

Principal of Optimality

 Definition

 Each page is labeled with the number of instructions that

will be executed before that page is first referenced

 The optimal page replacement algorithm: choose the page

with the highest label to be removed from the memory.

 Impractical: requires knowledge of future references

 If future references are known

 should use pre paging to allow paging to be overlapped

with computation.

Copyright ©: University of Illinois CS 241 Staff 86

Page Replacement Strategies

 Random page replacement

 Choose a page randomly

 FIFO - First in First Out

 Replace the page that has

been in primary memory

the longest

 LRU - Least Recently Used

 Replace the page that has

not been used for the

longest time

 LFU - Least Frequently

Used

 Replace the page that is

used least often

 NRU - Not Recently Used

 An approximation to LRU.

 Working Set

 Keep in memory those

pages that the process is

actively using.

Copyright ©: University of Illinois CS 241 Staff 87

Benefits of Virtual Memory

 Especially helpful in multiprogrammed system

 CPU schedules process B while process A waits for its

memory to be retrieved from disk

 Use secondary storage($)

 Extend DRAM($$$) with reasonable performance

 Protection

 Programs do not step over each other

Copyright ©: University of Illinois CS 241 Staff 88

Benefits of Virtual Memory

 Convenience

 Flat address space

 Programs have the same view of the world

 Load and store cached virtual memory without user

program intervention

 Reduce fragmentation

 Make cacheable units all the same size (page)

Copyright ©: University of Illinois CS 241 Staff 89

