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Address Spaces and Memory 

 Process 

 One or more thread 

 One address space 

 Thread 

 Stream of execution 

 Unit of concurrency 

 Address space 

 Memory space that threads use 

 Unit of data 
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Address Space Abstraction 

 Address space 

 All memory data 

 i.e., program code, stack, data segment 

 

 Hardware interface (physical reality) 

 Computer has one small, shared memory 

 Application interface (illusion) 

 Each process wants private, large memory 
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Address Space Illusions 

 Address independence 

 

 Protection 

 

 Virtual memory 
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Address Space 
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Code segment 

Data segment 

Heap 

Stack 

0xffffffffffffffff 

0x0 
fixed size 

fixed size 

grows  

dynamically 

grows  

dynamically 



Uni-programming 

 1 process runs at a time 

 Always load process into 

the same spot 

 How do you switch 

processes? 

 What illusions does this 

provide? 

 Independence, protection, 

virtual memory? 

 Problems? 
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Multi-Programming 

 Multiple processes in memory at the same 

time 

 What if there are more processes than what 

could fit into the memory? 

 Swapping 

 Memory allocation changes as  

 Processes come into memory 

 Processes leave memory 

 Swapped to disk 

 Complete execution 

Copyright ©: University of Illinois CS 241 Staff 9 



Swapping 
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Swapping 

Copyright ©: University of Illinois CS 241 Staff 13 

Monitor 

User 2 

User 1 

Disk 

User 1 

User 

Partition 



Swapping 
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Swapping 
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Swapping 
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Example 

 Consider a system in which memory 

consists of the following hole sizes in 

memory order:  

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.  

 Which hole is taken for successive requests of:   

 12K   

 10K   

 9K  
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Example 

 Consider a system in which memory 

consists of the following hole sizes in 

memory order:  

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.  

 Which hole is taken for successive requests of:   

 12K   

 10K   

 9K  
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First fit: 

20K, 10K, 

18K.    

Best fit: 

12K, 10K, 

9K. 

Worst fit: 

20K, 18K, 

and 15K.  



Storage Placement Strategies 

 Best fit 

 Produces the smallest leftover hole 

 Creates small holes that cannot be used  

 Worst Fit 

 Produces the largest leftover hole 

 Difficult to run large programs  

 First Fit 

 Creates average size holes  

 

 First-fit and best-fit better than worst-fit in terms of 

speed and storage utilization 
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Fragmentation 

 External Fragmentation  

 Memory space exists to satisfy a request, 

but it is not contiguous 

 Internal Fragmentation  

 Allocated memory may be slightly larger 

than requested memory 

 The size difference is memory internal to 

a partition, but not being used 
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Compaction 

 Reduce external fragmentation by 

compaction 

 Shuffle memory contents to place all free 

memory together in one large block 

 Compaction is possible only if relocation 

is dynamic, and is done at execution time 
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Solve Fragmentation w. 

Compaction 
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Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8 

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9 



Limitations of Swapping 

 Problems with swapping 

 Process must fit into physical memory 

(impossible to run larger processes) 

 Memory becomes fragmented 

 Processes are either in memory or on disk 

 Half and half doesn’t do any good 

Copyright ©: University of Illinois CS 241 Staff 24 



Virtual memory 

 Basic idea 
 Allow the OS to hand out more memory than 

exists on the system 

 Keep recently used stuff in physical memory 

 Move less recently used stuff to disk 

 Keep all of this hidden from processes 

 Process view 
 Processes still see an address space from 0 – 

max address 

 Movement of information to and from disk 
handled by the OS without process help 
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Multi-programming 

 Multiple processes in memory at the 

same time 

 What do we really need? 

 Address translation 

 Protection 
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Address Translation 

 Goals 

 Avoid conflicting addresses 

 Approaches 

 Static 

 Translate before you execute 

 Dynamic 

 Translate during execution, could change 
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Dynamic Translation 

 Translate every memory reference 

from virtual address to physical 

address 

 Virtual address 

 An address viewed by the user process 

 Physical address 

 An address viewed by the physical memory 
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Virtual Addresses 

 Different jobs run at different addresses 

 Program never sees physical address 

 At link-time 

 Linker must know program’s starting memory address 

 Correct starting address when a program starts 

in memory  
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Dynamic Address Translation 

 Translation enforces protection 

 One process can’t even refer to another process’s address 
space 

 Translation enables virtual memory 

 A virtual address only needs to be in physical memory when it 
is being accessed 

 Change translations on the fly as different virtual addresses 
occupy physical memory 

User 

process 

Translator 

(MMU) 

Physical 

memory 
Virt  
addr 

Phys  
addr 
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Dynamic Address Translation 

 Implementation tradeoffs 
 Flexibility (e.g., sharing, growth, virtual memory) 

 Size of translation data 

 Speed of translation 

User 

process 

Translator 

(MMU) 

Physical 

memory 
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Dynamic Address Translation 

 Load each process into contiguous regions of 

physical memory 

 

 Logical or "Virtual"  

addresses 

 Logical address  

space 

 Range: 0 to max 

 

 

 

 Physical addresses 

 Physical address space 

 Range: R+0 to R+max 

for base value R 
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Base Register 
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MMU 
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+ 
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Address 

Base Address 

Base: start of the process’s memory partition 



Base Register 
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Protection 

 Problem 

 How to prevent a malicious process from 

writing or jumping into other user's or OS 

partitions 

 Solution 

 Base bounds registers  
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Base and bounds 

if (virt addr > bound) 

    trap to kernel 

} else { 

    phys addr =  

   virt addr + base 

} 
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Base and bounds 
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Memory 

Bounds Register Base Register 

CPU 

Address 
< + 

Memory 

Address 

MA 

Logical 

Address LA 

Physical 

Address 

PA 

Fault 

Base Address 

Bound  

Address 

MA+BA 

Base 

Address 

BA 

Base: start of the process’s memory partition 
Bound: length of the process’s memory partition 



Base and bounds 

 What must change during a context switch? 

 

 Can a proc change its own base and 

bound? 

 

 

 

 Can you share memory with another 

process? 
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Base and bounds 

 How does the kernel handle the 

address space growing? 

 You are the OS designer, come up with 

an algorithm for allowing processes to 

grow 
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Segmentation 

 Segment 

 Region of contiguous memory 

 Segmentation 

 Generalized base and bounds with 

support for multiple segments at once 
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Segmentation 

 Segments are specified 

many different ways 

 What are the advantages 

over base and bounds? 

 What must be changed on 

context switch? 
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code 

stack 

data code 

stack 

data 

physical 

memory 

virtual 

memory 

segment 3 

Virtual 

memory 

segment 1 

Virtual 

memory 

segment 0 

0 

0 

0 

0 

fff 

4ff 

6ff 

0 

4ff 

2000 

2fff 

4000 

46ff 

Seg # Base Bound Description 

0 4000 700 Code segment 

1 0 500 Data segment 

2 Unused 

3 2000 1000 Stack 

segment 



Problem with Segmentation 

and B&B 

 What was the key abstraction not supported 

well by segmentation and by B&B? 

 How could you support this using B&B and 

segmentation? 

 

 Note: x86 used to support segmentation, 

now effectively deprecated with x86-64 
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Paging 

 Allocate physical memory in terms of fixed-

size chunks 

 Fixed unit makes it easier to allocate 

 Any free physical page can store any virtual 

page 

 Virtual address 

 Virtual page # (high bits of address) 

 Offset (low bits of address, e.g., bits 11-0 for 4k 

page) 
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Translation Table 

Virtual page # Physical page # 

0 10 

1 15 

2 20 

3 invalid 

… invalid 

1048575 invalid 
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Translation Process 

if (virtual page is invalid or non-resident or 

protected) { 

    trap to OS fault handler 

} else { 

    physical page # = pageTable[virtpage#] 

                        .physPageNum 

} 

 What must change on a context switch? 

 

 Each virtual page can be in physical memory or 
swapped out to disk (called paged) 
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Paging 

 How does the processor know that a 

virtual page is not in memory? 

 

 

 Like segments, pages can have 

different protections 

 Read, write, execute 
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Valid vs. Resident 

 Resident  

 Virtual page is in memory 

 NOT an error for a program to access 

non-resident page 

 Valid  

 Virtual page is legal for the program to 

access 

 e.g., part of the address space 
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Valid vs. Resident 

 Who makes a page resident/non-resident? 

 

 Who makes a virtual page valid/invalid? 

 

 Why would a process want one if its virtual 

pages to be invalid? 

Copyright ©: University of Illinois CS 241 Staff 49 



Valid vs. Resident 

 Who makes a page resident/non-resident? 

 OS memory manager 

 Who makes a virtual page valid/invalid? 

 User actions 

 Why would a process want one if its virtual 

pages to be invalid? 

 Avoid accidental memory references to bad 

locations 
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Address Translation Scheme 

 Address generated by CPU is divided into 

 Page number (p)  
 An index into a page table  

 Contains base address of each  

page in physical memory 

 Page offset (d)  
 Combined with base address  

 Defines the physical memory  

address that is sent to the  

memory unit 

 

For given logical address space 2m and page size 2n 
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P1 P2 D 

Page  

Number 

Page 

Offset 

m - n n 



Page Mapping Hardware 
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P D 

P  F 

0 
1 
0 
1 
1 
0 
1 

Page Table 

Virtual Memory 

Physical Memory 

Physical Address (F,D) 

P 

F 

D 

D 

P 

F D 

Contents(F,D) 

Contents(P,D) 

Virtual Address  

 (P,D) 



Page Mapping Hardware 
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Contents(4006) 

Contents(5006) 

004 006 

005 006 

4  5 

0 
1 
0 
1 
1 
0 
1 

Page Table 

Virtual Memory 

Physical Memory 

Virtual Address  

(004006) 

Physical Address (F,D) 

004 

005 

006 

006 

4 

Page size 1000 

Number of Possible Virtual Pages 1000 

Number of Page Frames 8 



Page Faults 

 What happens when a program accesses a virtual 

page that is not mapped into any physical page? 

 Hardware triggers a page fault 

 Page fault handler 

 Find any available free physical page 

 If none, evict some resident page to disk 

 Allocate a free physical page 

 Load the faulted virtual page to the prepared physical 

page 

 Modify the page table 
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Paging 

 Paging is how an OS achieves VM 

 Goal 

 Provide user with virtual memory that is as big 

as user needs 

 Implementation 

 Store virtual memory on disk 

 Cache parts of virtual memory being used in real 

memory 

 Load and store cached virtual memory without 

user program intervention 
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Paging Request 
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Paging Request 
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Paging Request 
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Paging Request 
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Paging Request 
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Paging Request 
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Paging Issues 

 Page size 

 Typically 2n 

 usually 512, 1k, 2k, 4k, or 8k 

 Example  

 32 bit VM address may have  220 (1 meg) 

pages with 4k (212) bytes per page 

 220 (1 meg) 32 bit page entries take 222 bytes 

(4 meg) 

 Page frames must map into real memory 
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Paging Issues 

 Physical memory size:  32 MB (225)  

 Page size 4K bytes 

 How many pages?       

 213 

 NO external fragmentation 

 Internal fragmentation on last page ONLY  
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Discussion 

 How can paging be made faster? 

 Mapping must be done for every reference 

 More memory = more pages! 

 Hardware registers (one per page) 

 Keep page table in memory 

 Is one level of paging sufficient? 

 Sharing and protections? 
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Multi-level Translation 

 Standard page table is a simple array 
 Might take huge amounts of memory for sparse 

address space. 
 32 bit address space (4KB pages): 220 * 4 = 4 MB 

 64 bit address space (4KB pages): 252 * 8 = 32 PB! 

 Multi-level translation changes this into a tree 

 

 E.g., two-level page table on 32 bit machine 
 Level 1 – virtual address bits 31-22 index 

 Level 2 – virtual address bits 21-12 index 

 Offset: bits 11-0 (4KB page) 
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Multilevel Paging and 

Performance 

 Each level is stored as a separate 

table in memory 

 Converting a logical address to a physical 

one with a three-level page table may 

take four memory accesses 

 Why? 
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Addressing on Two-Level 

Page Table 

 32-bit Architecture 

 4096= 212 B Page 

 4K Page of Logical Memory  

 4096 addressable bytes 

 Page the Page Table  

 4K pages as well  

 1024 addressable 4byte addresses 
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Two-Level Page-Table 
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Problem (from Tanenbaum) 

 A computer with a 32-bit address uses 

a two-level page table.  Virtual 

addresses split into a 9-bit top-level 

page table field, an 11-bit second-level 

page table field, and an offset.  How 

large are the pages and how many are 

there in the address space? 
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Problem 

 Assume single-level page table 

 Page table entry 

 Top 20 bits for physical address 

 Bottom 12 for permissions, etc. 

 Just like x86 page table entries 

 Write a function, translate, that 

converts a virtual address to a physical 

address 
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Return the physical address 

ulong translate(ulong va, pte_t *pt) { 

 

 

 

 

 

} 
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Discussion 

 How can paging be made faster? 

 Mapping must be done for every reference 

 2 level page table, 3 memory ops per each load/store 

Copyright ©: University of Illinois CS 241 Staff 78 



Paging - Caching the Page 

Table 

 Cache page table entries in registers 

 Called a translation lookaside buffer 

 i.e., TLB   

 Keep page table in memory  

 Location given by a page table base 

register 

 Page table base register changed at 

context switch time 
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Sharing Pages 

 Shared code 

 One copy of read-only code shared (e.g., libraries) among 

processes (e.g., text editors, compilers, web browsers). 

 

 Private code and data  

 Each process keeps a separate copy of the code and data 
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Shared Pages 
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Page Protection 

 Can add read, write, execute protection bits to page 

table to protect memory 

 Check is done by hardware during access 

 Can give shared memory location different protections 

from different processes by having different page table 

protection access bits 

 Valid-invalid bit attached to each entry in the page 

table 

 “valid” indicates that the associated page is in the process’ 

logical address space 

 “invalid” indicates that the page is not in the process’ 

logical address space 
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Page Protection  
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 Reference  page has been accessed 

 Valid   page exists 

 Resident  page is cached in primary 
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 Dirty   page has changed 

   since page in  
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Demand Paging 

 Never bring a page into primary memory until its 

needed 

 Fetch Strategies  

 When should a page be brought into primary (main) 

memory from secondary (disk) storage.  

 Placement Strategies 

 When a page is brought into primary storage, where 

should it be put?  

 Replacement Strategies 

 Which page now in primary storage should be removed 

from primary storage when some other page or segment 

needs to be brought in and there is not enough room 
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Issue: Eviction 

 Hopefully, kick out a less-useful page 

 Dirty pages require writing, clean pages don’t 

 Where do you write? To “swap space” 

 Goal: kick out the page that’s least useful 

 Problem: how do you determine utility? 

 Heuristic: temporal locality exists 

 Kick out pages that aren’t likely to be used again 
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Principal of Optimality  

 Definition 

 Each page is labeled with the number of instructions that 

will be executed before that page is first referenced 

 The optimal page replacement algorithm: choose the page 

with the highest label to be removed from the memory.  

 Impractical: requires knowledge of future references 

 If future references are known 

 should use pre paging to allow paging to be overlapped 

with computation.  
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Page Replacement Strategies 

 Random page replacement  

 Choose a page randomly  

 FIFO - First in First Out  

 Replace the page that has 

been in primary memory 

the longest  

 LRU - Least Recently Used  

 Replace the page that has 

not been used for the 

longest time  

 LFU - Least Frequently 

Used  

 Replace the page that is 

used least often  

 NRU - Not Recently Used  

 An approximation to LRU.  

 Working Set  

 Keep in memory those 

pages that the process is 

actively using.  
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Benefits of Virtual Memory 

 Especially helpful in multiprogrammed system 

 CPU schedules process B while process A waits for its 

memory to be retrieved from disk 

 Use secondary storage($) 

 Extend DRAM($$$) with reasonable performance 

 Protection 

 Programs do not step over each other 
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Benefits of Virtual Memory 

 Convenience 

 Flat address space 

 Programs have the same view of the world 

 Load and store cached virtual memory without user 

program intervention  

 Reduce fragmentation 

 Make cacheable units all the same size (page) 
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