

Copyright ©: University of Illinois CS 241 Staff 1

Memory

Address Spaces and Memory

 Process

 One or more thread

 One address space

 Thread

 Stream of execution

 Unit of concurrency

 Address space

 Memory space that threads use

 Unit of data

Copyright ©: University of Illinois CS 241 Staff 2

Address Space Abstraction

 Address space

 All memory data

 i.e., program code, stack, data segment

 Hardware interface (physical reality)

 Computer has one small, shared memory

 Application interface (illusion)

 Each process wants private, large memory

Copyright ©: University of Illinois CS 241 Staff 3

Address Space Illusions

 Address independence

 Protection

 Virtual memory

Copyright ©: University of Illinois CS 241 Staff 4

Address Space

Copyright ©: University of Illinois CS 241 Staff 6

Code segment

Data segment

Heap

Stack

0xffffffffffffffff

0x0
fixed size

fixed size

grows

dynamically

grows

dynamically

Uni-programming

 1 process runs at a time

 Always load process into

the same spot

 How do you switch

processes?

 What illusions does this

provide?

 Independence, protection,

virtual memory?

 Problems?

Copyright ©: University of Illinois CS 241 Staff 7

User

Program

Operating

Systems in

ROM

0

Multi-Programming

 Multiple processes in memory at the same

time

 What if there are more processes than what

could fit into the memory?

 Swapping

 Memory allocation changes as

 Processes come into memory

 Processes leave memory

 Swapped to disk

 Complete execution

Copyright ©: University of Illinois CS 241 Staff 9

Swapping

Copyright ©: University of Illinois CS 241 Staff 10

Monitor

Disk

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 11

Monitor

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 12

Monitor

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 13

Monitor

User 2

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 14

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 15

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 16

Monitor

Disk

User 1

User 2

User

Partition
User 1

Example

 Consider a system in which memory

consists of the following hole sizes in

memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 18

Example

 Consider a system in which memory

consists of the following hole sizes in

memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 19

First fit:

20K, 10K,

18K.

Best fit:

12K, 10K,

9K.

Worst fit:

20K, 18K,

and 15K.

Storage Placement Strategies

 Best fit

 Produces the smallest leftover hole

 Creates small holes that cannot be used

 Worst Fit

 Produces the largest leftover hole

 Difficult to run large programs

 First Fit

 Creates average size holes

 First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 20

Fragmentation

 External Fragmentation

 Memory space exists to satisfy a request,

but it is not contiguous

 Internal Fragmentation

 Allocated memory may be slightly larger

than requested memory

 The size difference is memory internal to

a partition, but not being used

Copyright ©: University of Illinois CS 241 Staff 21

Compaction

 Reduce external fragmentation by

compaction

 Shuffle memory contents to place all free

memory together in one large block

 Compaction is possible only if relocation

is dynamic, and is done at execution time

Copyright ©: University of Illinois CS 241 Staff 22

Solve Fragmentation w.

Compaction

Copyright ©: University of Illinois CS 241 Staff 23

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9

Limitations of Swapping

 Problems with swapping

 Process must fit into physical memory

(impossible to run larger processes)

 Memory becomes fragmented

 Processes are either in memory or on disk

 Half and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 24

Virtual memory

 Basic idea
 Allow the OS to hand out more memory than

exists on the system

 Keep recently used stuff in physical memory

 Move less recently used stuff to disk

 Keep all of this hidden from processes

 Process view
 Processes still see an address space from 0 –

max address

 Movement of information to and from disk
handled by the OS without process help

Copyright ©: University of Illinois CS 241 Staff 25

Multi-programming

 Multiple processes in memory at the

same time

 What do we really need?

 Address translation

 Protection

Copyright ©: University of Illinois CS 241 Staff 26

Address Translation

 Goals

 Avoid conflicting addresses

 Approaches

 Static

 Translate before you execute

 Dynamic

 Translate during execution, could change

Copyright ©: University of Illinois CS 241 Staff 27

Dynamic Translation

 Translate every memory reference

from virtual address to physical

address

 Virtual address

 An address viewed by the user process

 Physical address

 An address viewed by the physical memory

Copyright ©: University of Illinois CS 241 Staff 28

Virtual Addresses

 Different jobs run at different addresses

 Program never sees physical address

 At link-time

 Linker must know program’s starting memory address

 Correct starting address when a program starts

in memory

Copyright ©: University of Illinois CS 241 Staff 29

Dynamic Address Translation

 Translation enforces protection

 One process can’t even refer to another process’s address
space

 Translation enables virtual memory

 A virtual address only needs to be in physical memory when it
is being accessed

 Change translations on the fly as different virtual addresses
occupy physical memory

User

process

Translator

(MMU)

Physical

memory
Virt
addr

Phys
addr

Copyright ©: University of Illinois CS 241 Staff 30

Dynamic Address Translation

 Implementation tradeoffs
 Flexibility (e.g., sharing, growth, virtual memory)

 Size of translation data

 Speed of translation

User

process

Translator

(MMU)

Physical

memory

Copyright ©: University of Illinois CS 241 Staff 31

Virt
addr

Phys
addr

Dynamic Address Translation

 Load each process into contiguous regions of

physical memory

 Logical or "Virtual"

addresses

 Logical address

space

 Range: 0 to max

 Physical addresses

 Physical address space

 Range: R+0 to R+max

for base value R

Copyright ©: University of Illinois CS 241 Staff 32

Base Register

Copyright ©: University of Illinois CS 241 Staff 33

MMU

Memory

Base Register

CPU

Instruction

Address

+

BA

MA MA+BA

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

Base Register

Copyright ©: University of Illinois CS 241 Staff 34

MMU

Memory

Base Register

CPU

Instruction

Address

+

14000

346 14346

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

Protection

 Problem

 How to prevent a malicious process from

writing or jumping into other user's or OS

partitions

 Solution

 Base bounds registers

Copyright ©: University of Illinois CS 241 Staff 35

Base and bounds

if (virt addr > bound)

 trap to kernel

} else {

 phys addr =

 virt addr + base

}

Copyright ©: University of Illinois CS 241 Staff 36

physical

memory

physical

memory

size

base + bound

base
bound

virtual

memory

0 0

Base and bounds

Copyright ©: University of Illinois CS 241 Staff 37

Memory

Bounds Register Base Register

CPU

Address
< +

Memory

Address

MA

Logical

Address LA

Physical

Address

PA

Fault

Base Address

Bound

Address

MA+BA

Base

Address

BA

Base: start of the process’s memory partition
Bound: length of the process’s memory partition

Base and bounds

 What must change during a context switch?

 Can a proc change its own base and

bound?

 Can you share memory with another

process?

Copyright ©: University of Illinois CS 241 Staff 38

Base and bounds

 How does the kernel handle the

address space growing?

 You are the OS designer, come up with

an algorithm for allowing processes to

grow

Copyright ©: University of Illinois CS 241 Staff 40

Segmentation

 Segment

 Region of contiguous memory

 Segmentation

 Generalized base and bounds with

support for multiple segments at once

Copyright ©: University of Illinois CS 241 Staff 41

Segmentation

 Segments are specified

many different ways

 What are the advantages

over base and bounds?

 What must be changed on

context switch?

Copyright ©: University of Illinois CS 241 Staff 42

code

stack

data code

stack

data

physical

memory

virtual

memory

segment 3

Virtual

memory

segment 1

Virtual

memory

segment 0

0

0

0

0

fff

4ff

6ff

0

4ff

2000

2fff

4000

46ff

Seg # Base Bound Description

0 4000 700 Code segment

1 0 500 Data segment

2 Unused

3 2000 1000 Stack

segment

Problem with Segmentation

and B&B

 What was the key abstraction not supported

well by segmentation and by B&B?

 How could you support this using B&B and

segmentation?

 Note: x86 used to support segmentation,

now effectively deprecated with x86-64

Copyright ©: University of Illinois CS 241 Staff 43

Paging

 Allocate physical memory in terms of fixed-

size chunks

 Fixed unit makes it easier to allocate

 Any free physical page can store any virtual

page

 Virtual address

 Virtual page # (high bits of address)

 Offset (low bits of address, e.g., bits 11-0 for 4k

page)

Copyright ©: University of Illinois CS 241 Staff 44

Translation Table

Virtual page # Physical page #

0 10

1 15

2 20

3 invalid

… invalid

1048575 invalid

Copyright ©: University of Illinois CS 241 Staff 45

Translation Process

if (virtual page is invalid or non-resident or

protected) {

 trap to OS fault handler

} else {

 physical page # = pageTable[virtpage#]

 .physPageNum

}

 What must change on a context switch?

 Each virtual page can be in physical memory or
swapped out to disk (called paged)

Copyright ©: University of Illinois CS 241 Staff 46

Paging

 How does the processor know that a

virtual page is not in memory?

 Like segments, pages can have

different protections

 Read, write, execute

Copyright ©: University of Illinois CS 241 Staff 47

Valid vs. Resident

 Resident

 Virtual page is in memory

 NOT an error for a program to access

non-resident page

 Valid

 Virtual page is legal for the program to

access

 e.g., part of the address space

Copyright ©: University of Illinois CS 241 Staff 48

Valid vs. Resident

 Who makes a page resident/non-resident?

 Who makes a virtual page valid/invalid?

 Why would a process want one if its virtual

pages to be invalid?

Copyright ©: University of Illinois CS 241 Staff 49

Valid vs. Resident

 Who makes a page resident/non-resident?

 OS memory manager

 Who makes a virtual page valid/invalid?

 User actions

 Why would a process want one if its virtual

pages to be invalid?

 Avoid accidental memory references to bad

locations

Copyright ©: University of Illinois CS 241 Staff 50

Address Translation Scheme

 Address generated by CPU is divided into

 Page number (p)
 An index into a page table

 Contains base address of each

page in physical memory

 Page offset (d)
 Combined with base address

 Defines the physical memory

address that is sent to the

memory unit

For given logical address space 2m and page size 2n

Copyright ©: University of Illinois CS 241 Staff 51

P1 P2 D

Page

Number

Page

Offset

m - n n

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 52

P D

P  F

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Physical Address (F,D)

P

F

D

D

P

F D

Contents(F,D)

Contents(P,D)

Virtual Address

 (P,D)

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 53

Contents(4006)

Contents(5006)

004 006

005 006

4  5

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Virtual Address

(004006)

Physical Address (F,D)

004

005

006

006

4

Page size 1000

Number of Possible Virtual Pages 1000

Number of Page Frames 8

Page Faults

 What happens when a program accesses a virtual

page that is not mapped into any physical page?

 Hardware triggers a page fault

 Page fault handler

 Find any available free physical page

 If none, evict some resident page to disk

 Allocate a free physical page

 Load the faulted virtual page to the prepared physical

page

 Modify the page table

Copyright ©: University of Illinois CS 241 Staff 54

Paging

 Paging is how an OS achieves VM

 Goal

 Provide user with virtual memory that is as big

as user needs

 Implementation

 Store virtual memory on disk

 Cache parts of virtual memory being used in real

memory

 Load and store cached virtual memory without

user program intervention

Copyright ©: University of Illinois CS 241 Staff 55

Paging Request

Copyright ©: University of Illinois CS 241 Staff 56

3 1

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 3

Paging Request

Copyright ©: University of Illinois CS 241 Staff 57

3 1

1 2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 1

Paging Request

Copyright ©: University of Illinois CS 241 Staff 58

3 1

1

6

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 6

Paging Request

Copyright ©: University of Illinois CS 241 Staff 59

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 2

Paging Request

Copyright ©: University of Illinois CS 241 Staff 60

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 8

What happens when there

is no more space in the

cache?

Paging Request

Copyright ©: University of Illinois CS 241 Staff 61

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Store Virtual Memory

Page 1 to disk

Paging Request

Copyright ©: University of Illinois CS 241 Staff 62

3 1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Process request for Address
within Virtual Memory Page 8

Paging Request

Copyright ©: University of Illinois CS 241 Staff 63

3 1

8

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Load Virtual Memory

Page 8 to cache

Paging Issues

 Page size

 Typically 2n

 usually 512, 1k, 2k, 4k, or 8k

 Example

 32 bit VM address may have 220 (1 meg)

pages with 4k (212) bytes per page

 220 (1 meg) 32 bit page entries take 222 bytes

(4 meg)

 Page frames must map into real memory

Copyright ©: University of Illinois CS 241 Staff 64

Paging Issues

 Physical memory size: 32 MB (225)

 Page size 4K bytes

 How many pages?

 213

 NO external fragmentation

 Internal fragmentation on last page ONLY

Copyright ©: University of Illinois CS 241 Staff 65

Discussion

 How can paging be made faster?

 Mapping must be done for every reference

 More memory = more pages!

 Hardware registers (one per page)

 Keep page table in memory

 Is one level of paging sufficient?

 Sharing and protections?

Copyright ©: University of Illinois CS 241 Staff 66

Multi-level Translation

 Standard page table is a simple array
 Might take huge amounts of memory for sparse

address space.
 32 bit address space (4KB pages): 220 * 4 = 4 MB

 64 bit address space (4KB pages): 252 * 8 = 32 PB!

 Multi-level translation changes this into a tree

 E.g., two-level page table on 32 bit machine
 Level 1 – virtual address bits 31-22 index

 Level 2 – virtual address bits 21-12 index

 Offset: bits 11-0 (4KB page)

Copyright ©: University of Illinois CS 241 Staff 67

Multilevel Paging and

Performance

 Each level is stored as a separate

table in memory

 Converting a logical address to a physical

one with a three-level page table may

take four memory accesses

 Why?

Copyright ©: University of Illinois CS 241 Staff 68

Addressing on Two-Level

Page Table

 32-bit Architecture

 4096= 212 B Page

 4K Page of Logical Memory

 4096 addressable bytes

 Page the Page Table

 4K pages as well

 1024 addressable 4byte addresses

Copyright ©: University of Illinois CS 241 Staff 69

P1 P2 D

Page

Number

Page

Offset

12 10 10

Two-Level Page-Table

70 Copyright ©: University of Illinois CS 241 Staff

Problem (from Tanenbaum)

 A computer with a 32-bit address uses

a two-level page table. Virtual

addresses split into a 9-bit top-level

page table field, an 11-bit second-level

page table field, and an offset. How

large are the pages and how many are

there in the address space?

Copyright ©: University of Illinois CS 241 Staff 73

Problem

 Assume single-level page table

 Page table entry

 Top 20 bits for physical address

 Bottom 12 for permissions, etc.

 Just like x86 page table entries

 Write a function, translate, that

converts a virtual address to a physical

address

Copyright ©: University of Illinois CS 241 Staff 75

Return the physical address

ulong translate(ulong va, pte_t *pt) {

}

Copyright ©: University of Illinois CS 241 Staff 76

Discussion

 How can paging be made faster?

 Mapping must be done for every reference

 2 level page table, 3 memory ops per each load/store

Copyright ©: University of Illinois CS 241 Staff 78

Paging - Caching the Page

Table

 Cache page table entries in registers

 Called a translation lookaside buffer

 i.e., TLB

 Keep page table in memory

 Location given by a page table base

register

 Page table base register changed at

context switch time

Copyright ©: University of Illinois CS 241 Staff 79

Sharing Pages

 Shared code

 One copy of read-only code shared (e.g., libraries) among

processes (e.g., text editors, compilers, web browsers).

 Private code and data

 Each process keeps a separate copy of the code and data

80 Copyright ©: University of Illinois CS 241 Staff

Shared Pages

81 Copyright ©: University of Illinois CS 241 Staff

Page Protection

 Can add read, write, execute protection bits to page

table to protect memory

 Check is done by hardware during access

 Can give shared memory location different protections

from different processes by having different page table

protection access bits

 Valid-invalid bit attached to each entry in the page

table

 “valid” indicates that the associated page is in the process’

logical address space

 “invalid” indicates that the page is not in the process’

logical address space

Copyright ©: University of Illinois CS 241 Staff 82

Page Protection

Copyright ©: University of Illinois CS 241 Staff 83

 Reference page has been accessed

 Valid page exists

 Resident page is cached in primary

 memory

 Dirty page has changed

 since page in

D R V Reference

Dirty Resident Valid

W E Re

Execute Write Read

Demand Paging

 Never bring a page into primary memory until its

needed

 Fetch Strategies

 When should a page be brought into primary (main)

memory from secondary (disk) storage.

 Placement Strategies

 When a page is brought into primary storage, where

should it be put?

 Replacement Strategies

 Which page now in primary storage should be removed

from primary storage when some other page or segment

needs to be brought in and there is not enough room

Copyright ©: University of Illinois CS 241 Staff 84

Issue: Eviction

 Hopefully, kick out a less-useful page

 Dirty pages require writing, clean pages don’t

 Where do you write? To “swap space”

 Goal: kick out the page that’s least useful

 Problem: how do you determine utility?

 Heuristic: temporal locality exists

 Kick out pages that aren’t likely to be used again

Copyright ©: University of Illinois CS 241 Staff 85

Principal of Optimality

 Definition

 Each page is labeled with the number of instructions that

will be executed before that page is first referenced

 The optimal page replacement algorithm: choose the page

with the highest label to be removed from the memory.

 Impractical: requires knowledge of future references

 If future references are known

 should use pre paging to allow paging to be overlapped

with computation.

Copyright ©: University of Illinois CS 241 Staff 86

Page Replacement Strategies

 Random page replacement

 Choose a page randomly

 FIFO - First in First Out

 Replace the page that has

been in primary memory

the longest

 LRU - Least Recently Used

 Replace the page that has

not been used for the

longest time

 LFU - Least Frequently

Used

 Replace the page that is

used least often

 NRU - Not Recently Used

 An approximation to LRU.

 Working Set

 Keep in memory those

pages that the process is

actively using.

Copyright ©: University of Illinois CS 241 Staff 87

Benefits of Virtual Memory

 Especially helpful in multiprogrammed system

 CPU schedules process B while process A waits for its

memory to be retrieved from disk

 Use secondary storage($)

 Extend DRAM($$$) with reasonable performance

 Protection

 Programs do not step over each other

Copyright ©: University of Illinois CS 241 Staff 88

Benefits of Virtual Memory

 Convenience

 Flat address space

 Programs have the same view of the world

 Load and store cached virtual memory without user

program intervention

 Reduce fragmentation

 Make cacheable units all the same size (page)

Copyright ©: University of Illinois CS 241 Staff 89

