
CS 241 Copyright ©: University of Illinois CS 241 Staff 1

More Network Programming

CS 241 Copyright ©: University of Illinois CS 241 Staff 2

More Network Programming

 Advanced uses of sockets
 How to create timers

 How to survive abrupt channel closure

 What if bind()says “Address already in use” ?

 HTTP push server
 Request framing and server push concepts

 Demo

 HTTP push server code
 Components

 Flow charts

 Code walk-through (code is online)

CS 241 Copyright ©: University of Illinois CS 241 Staff 3

More Network Programming

 Useful Application Programming Interfaces
 Topics

 More advanced sockets

 Unix file functionality

 Multithreaded programming (Posix Threads)

 Specific APIs
 select/poll

 advanced sockets

A UDP Server

 How can a UDP

server service

multiple ports

simultaneously?

CS 241 Copyright ©: University of Illinois CS 241 Staff 4

UDP

IP

Ethernet Adapter

UDP Server

Port 2000 Port 3000

UDP Server: Servicing Two

Ports

int s1; /* socket descriptor 1 */

int s2; /* socket descriptor 2 */

/* 1) create socket s1 */

/* 2) create socket s2 */

/* 3) bind s1 to port 2000 */

/* 4) bind s2 to port 3000 */

while(1) {

 recvfrom(s1, buf, sizeof(buf), ...);

 /* process buf */

 recvfrom(s2, buf, sizeof(buf), ...);

 /* process buf */

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 5

What problems does

this code have?

CS 241 Copyright ©: University of Illinois CS 241 Staff 6

Building Timeouts with Select

and Poll

 Time structure

struct timeval {

 long tv_sec; /* seconds */

 long tv_usec; /* microseconds */

};

unix will have its own "Y2K" problem one

second after 10:14:07pm, Monday January 18,

2038 (will appear to be 3:45:52pm, Friday

December 13, 1901)

Number of seconds since

midnight, January 1, 1970 GMT

CS 241 Copyright ©: University of Illinois CS 241 Staff 7

Select

 High-resolution sleep function
 All descriptor sets NULL

 Positive timeout

 Wait until descriptor(s) become ready

 At least one descriptor in set

 timeout NULL

 Wait until descriptor(s) become ready or timeout occurs

 At least one descriptor in set

 Positive timeout

 Check descriptors immediately (poll)

 At least one descriptor in set

 0 timeout

Which file descriptors

are set and what

should the timeout

value be?

CS 241 Copyright ©: University of Illinois CS 241 Staff 8

Select: Example

fd_set my_read;

FD_ZERO(&my_read);

FD_SET(0, &my_read);

if (select(1, &my_read, NULL, NULL) == 1) {

 ASSERT(FD_ISSET(0, &my_read);

 /* data ready on stdin */ What went wrong:

after select indicates

data available on a

connection, read

returns no data?

Select: Timeout Example

int main(void) {

 struct timeval tv;

 fd_set readfds;

 tv.tv_sec = 2;

 tv.tv_usec = 500000;

 FD_ZERO(&readfds);

 FD_SET(STDIN, &readfds);

 // don't care about writefds and exceptfds:

 select(1, &readfds, NULL, NULL, &tv);

 if (FD_ISSET(STDIN, &readfds))

 printf("A key was pressed!\n");

 else

 printf("Timed out.\n");

 return 0;

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 9

Wait 2.5 seconds for

something to appear

on standard input

CS 241 Copyright ©: University of Illinois CS 241 Staff 10

Poll

 High-resolution sleep function
 0 nfds

 Positive timeout

 Wait until descriptor(s) become ready

 nfds > 0

 timeout INFTIM or -1

 Wait until descriptor(s) become ready or timeout occurs

 nfds > 0

 Positive timeout

 Check descriptors immediately (poll)

 nfds > 0

 0 timeout

select() vs. poll()

Which to use?

 BSD-family (e.g., FreeBSD, MacOS)

 poll() just calls select() internally

 System V family (e.g., AT&T Unix)

 select() just calls poll() internally

CS 241 Copyright ©: University of Illinois CS 241 Staff 11

CS 241 Copyright ©: University of Illinois CS 241 Staff 12

Advanced Sockets: signal

 Problem: Socket at other end is closed

 Write to your end generates SIGPIPE

 This signal kills the program by default!

signal (SIGPIPE, SIG_IGN);

 Call at start of main in server

 Allows you to ignore broken pipe signals

 Can ignore or install a proper signal handler

 Default handler exits (terminates process)

Advanced Sockets

 Problem: How come I get "address already
in use" from bind()?

 You have stopped your server, and then re-

started it right away

 The sockets that were used by the first

incarnation of the server are still active

CS 241 Copyright ©: University of Illinois CS 241 Staff 13

CS 241 Copyright ©: University of Illinois CS 241 Staff 14

Advanced Sockets:
setsockopt

int yes = 1;

setsockopt (fd, SOL_SOCKET,

SO_REUSEADDR, (char *) &yes, sizeof

(yes));

 Call just before bind()

 Allows bind to succeed despite the existence of

existing connections in the requested TCP port

 Connections in limbo (e.g. lost final ACK) will

cause bind to fail

CS 241 Copyright ©: University of Illinois CS 241 Staff 15

HTTP Request Framing

 Characteristics

 ASCII-based (human readable)

 Framed by text lines

 First line is command

 Remaining lines are additional data

 Blank line ends request frame

GET /surf/too/much.html HTTP/1.0

Date: 28 February 2000 011:25:53 CST

Server: www.surfanon.org

<blank line>

CS 241 Copyright ©: University of Illinois CS 241 Staff 16

HTTP Server Push (Netscape-

Specific)

 Idea
 Connection remains open

 Server pushes down new data as needed

 Termination
 Any time by server

 Stop loading (or reload) by client

 Components
 Header indicating multiple parts

 New part replaces old part

 New part sent any time

 Wrappers for each part

CS 241 Copyright ©: University of Illinois CS 241 Staff 17

HTTP Server Push (Netscape-

Specific)

the data component

HTTP/1.0 200 OK

Content-type: multipart/x-mixed-replace;\

boundary=---never_in_document---

---never_in_document---

Content-type: text/html

(actual data)

---never_in_document---

CS 241 Copyright ©: University of Illinois CS 241 Staff 19

Example

 Push server

 Client-server connection remains open

 Server pushes new data

 Use pthreads

 Main thread

 Accepts new client connections

 Spawns child thread for each client

 Child threads

 Parses client requests

 Constructs response

 Checks for file modification

 Pushes file when necessary

CS 241 Copyright ©: University of Illinois CS 241 Staff 20

Example: Server Thread Flow

Chart

Start
Set up server

TCP socket

Initialize

thread

attributes

structure

Spawn a child

thread to

handle new

connection

Wait for a

connection

Create a

thread

specific data

structure

CS 241 Copyright ©: University of Illinois CS 241 Staff 21

Example: Client Thread Flow

Chart

Start
Push thread

cleanup function

Success

in send? y

Send file to client y

n

Store file name and

reset send time y
Request

valid?

y

Done
Pop and execute thread

cleanup function

n

n

Wait for 1 second

or until client send

request

Got client

request?

Need to

send? n

CS 241 Copyright ©: University of Illinois CS 241 Staff 23

set_up_server_socket

static int set_up_server_socket (u_short port) {

 int fd; /* server socket file descriptor */

 int yes = 1; /* used for setting socket options */

 struct sockaddr_in addr; /* server socket address */

 /* Create a TCP socket. */

 if ((fd = socket (PF_INET, SOCK_STREAM, 0)) == -1) {

 perror ("set_up_server_socket/socket");

 return -1;

 }

 /* Allow port reuse with the bind below. */

 if (setsockopt (fd, SOL_SOCKET, SO_REUSEADDR,
 (char*)&yes, sizeof (yes)) == -1) {

 perror ("set_up_server_socket/setsockopt");

 return -1;

 }

CS 241 Copyright ©: University of Illinois CS 241 Staff 24

set_up_server_socket

 /* Set up the address. */

 bzero (&addr, sizeof (addr));

 addr.sin_family = AF_INET; /* Internet address */

 addr.sin_addr.s_addr = INADDR_ANY; /* fill in local IP address */

 addr.sin_port = htons (port); /* port specified by caller*/

 /* Bind the socket to the port. */

 if (bind (fd, (struct sockaddr*)&addr, sizeof (addr)) == -1) {

 perror ("set_up_server_socket/bind");

 return -1;

 }

 /* Listen for incoming connections (socket into passive state). */

 if (listen (fd, BACKLOG) == -1) {

 perror ("set_up_server_socket/listen");

 return -1;

 }

 /* The server socket is now ready. */

 return fd;

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 25

wait_for_connections

static void wait_for_connections (int fd){

 pthread_attr_t attr; /* initial thread attributes */

 thread_info_t* info; /* thread-specific connection information */

 int len; /* value-result argument to accept */

 pthread_t thread_id; /* child thread identifier */

 /* Signal a bug for invalid descriptors. */

 ASSERT (fd > 0);

 /* Initialize the POSIX threads attribute structure. */

 if (pthread_attr_init (&attr) != 0) {

 fputs ("failed to initialize pthread attributes\n", stderr);

 return;

 }

 /* The main thread never joins with the children. */

 if (pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED)
!= 0) {

 fputs ("failed to set detached state attribute\n", stderr);

 return;

 }

CS 241 Copyright ©: University of Illinois CS 241 Staff 26

wait_for_connections

 /* Use an infinite loop to wait for connections. For each

 connection, create a structure with the thread-specific data, then
spawn a child thread and pass it the data. The child is
responsible for deallocating the memory before it terminates. */

 while (1) {

 /* Create a thread information structure and initialize

 fields that can be filled in before a client contacts

 the server. */

 if ((info = calloc (1, sizeof (*info))) == NULL) {

 perror ("wait_for_connections/calloc");

 return;

 }

 info->fname = NULL;

 info->last_sent = (time_t)0;

CS 241 Copyright ©: University of Illinois CS 241 Staff 27

wait_for_connections

 /* Wait for a client to contact the server. */

 len = sizeof (info->addr);

 if ((info->fd = accept (fd, (struct sockaddr*)&info->addr,

 &len)) == -1) {

 perror ("accept");

 return;

 }

 /* Create a thread to handle the client. */

 if (pthread_create (&thread_id, &attr,

 (void* (*) (void*))client_thread, info) != 0) {

 fputs ("failed to create thread\n", stderr);

 /* The child does not exist, the main thread must clean up. */

 close (info->fd);

 free (info);

 return;

 }

 }

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 28

client_thread

void client_thread (thread_info_t* info) {

 /* Check argument. */

 ASSERT (info != NULL);

 /* Free the thread info block whenever the thread terminates.
Note that pushing this cleanup function races with external
termination. If external termination wins, the memory is never
released. */

 pthread_cleanup_push ((void (*)(void*))release_thread_info, info);

 /* Loop between waiting for a request and sending a new copy of
the current file of interest. */

 while (read_client_request (info) == 0 &&

 send_file_to_client (info) == 0);

 /* Defer cancellations to avoid re-entering deallocation routine

 (release_thread_info) in the middle, then pop (and execute) the

 deallocation routine.*/

 pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED, NULL);

 pthread_cleanup_pop (1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 29

client_has_data

static int client_has_data (int fd) {

 fd_set read_set;

 struct timeval timeout;

 /* Check argument. */

 ASSERT (fd > 0);

 /* Set timeout for select. */

 timeout.tv_sec = CHECK_PERIOD;

 timeout.tv_usec = 0;

 /* Set read mask for select. */

 FD_ZERO (&read_set);

 FD_SET (fd, &read_set);

 /* Call select. Possible return values are {-1, 0, 1}. */

 if (select (fd + 1, &read_set, NULL, NULL, &timeout) < 1) {

 /* We can't check errno in a thread--assume nothing bad has happened. */

 return 0;

 }

 /* Select returned 1 file descriptor ready for reading. */

 return 1;

}

