
Signals and Timers

1

Introduction to Signals

 Signal

 Notification to a process of an event
 Interrupt whatever I was doing, and jump to signal

handler

 Enables Coordination of asynchronous events
 Email message arrives on my machine

 Mailing agent (user) process should retrieve it

 Invalid memory access happens
 OS should inform scheduler to remove process from the

processor

 Alarm clock goes off
 Process which sets the alarm should catch it

Copyright ©: University of Illinois CS 241 Staff 2

Basic Signal Concepts

 Generation
 The time the event that

causes the signal occurs

 Delivery
 The time when a process

receives the signal

 Lifetime
 The interval between

generation and delivery

 Pending
 A signal that is generated

but not delivered

 Catch
 A process catches a signal

if it executes a signal
handler when the signal is
delivered

 Alternatively, a process can
ignore a signal when it is
delivered

 Block
 A process can temporarily

prevent a signal from being
delivered by blocking it

 Signal Mask
 The set of signals currently

blocked

Copyright ©: University of Illinois CS 241 Staff 3

Generating Signals

 Symbolic name
 Starting with SIG

 Signal names are defined in <signal.h>

 Users generated signals
 e.g., SIGUSR1

 OS generated signals
 e.g., SIGSEGV – invalid memory reference

 System call generated signals
 e.g., SIGALRM – alarm

Copyright ©: University of Illinois CS 241 Staff 4

Some POSIX Required

Signals

Copyright ©: University of Illinois CS 241 Staff 5

Signal Description Default action

SIGABRT abort process implementation dependent

SIGALRM alarm clock abnormal termination

SIGBUS access undefined part of memory implementation dependent

SIGCHLD child terminated, stopped or

continued

ignore

SIGILL invalid hardware instruction implementation dependent

SIGINT interactive attention signal (usually

ctrl-C)

abnormal termination

SIGKILL terminated (cannot be caught or

ignored)

abnormal termination

Some POSIX Required

Signals

Copyright ©: University of Illinois CS 241 Staff 6

Signal Description Default action

SIGSEGV Invalid memory reference implementation dependent

SIGSTOP Execution stopped stop

SIGTERM termination Abnormal termination

SIGTSTP Terminal stop stop

SIGTTIN Background process attempting read stop

SIGTTOU Background process attempting write stop

SIGURG High bandwidth data available on

socket

ignore

How Signals Work

Copyright ©: University of Illinois CS 241 Staff 7

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumes

Signal
Mask

A little puzzle

 Signals can be seen as a kind of

interprocess communication

 What’s the difference between signals

and, say, pipes or shared memory?

 Asynchronous notification

 Doesn’t send a “message” as such; just

a signal number

 Puzzle: Then how could I do this?

Copyright ©: University of Illinois CS 241 Staff 8

Run demo

Signaling

Process 1 Process 2

Kernel 1. Generate

a signal

2. Kernel

representation

3. Deliver

signal

Copyright ©: University of Illinois CS 241 Staff 9

Signaling

Process 1 Process 2

Kernel 1. Generate

a signal

2. Kernel

representation

3. Deliver

signal

Copyright ©: University of Illinois CS 241 Staff 10

Generating a signal

 Generated by a process
 System call kill(pid, signal)

 Sends signal to process pid

 Poorly named: sends any signal, not just SIGKILL

 Generated by the kernel, when...
 a child process exits or is stops (SIGCHLD)

 floating point exception, e.g. div. by zero
(SIGFPE)

 bad memory access (SIGSEGV)

 ...

Copyright ©: University of Illinois CS 241 Staff 11

Generating signals from

the command line

 Signal a process from the command line
 Use kill

 kill -l
 List the signals the system understands

 kill [-signal] pid

 Send signal to the process with ID pid.

 Optional argument may be a name or a number
(default is SIGTERM).

 To unconditionally kill a process
 kill -9 pid which is the same as

 kill -SIGKILL pid

Copyright ©: University of Illinois CS 241 Staff 12

Generating signals in interactive

terminal applications

 CTRL-C is SIGINT

 Interactive attention signal

 CTRL-Z is SIGSTOP

 Execution stopped – cannot be ignored

 CTRL-Y is SIGCONT

 Execution continued if stopped

 CTRL-\ is SIGQUIT

 Interactive termination: core dump

Copyright ©: University of Illinois CS 241 Staff 13

A program can signal itself

 Similar to raising an exception
 raise(signal) or

 kill(getpid(), signal)

 Or can signal after a delay
 unsigned alarm(unsigned seconds);

 Calls are not stacked
 any previously set alarm() is cancelled

 alarm(20)
 Send SIGALRM to calling process after 20 seconds

 alarm(0)
 cancels current alarm

Copyright ©: University of Illinois CS 241 Staff 14

A program can signal itself

 Example: infinite loop ... for 10

seconds

int main(void) {

 alarm(10);

 while(1);

}

Copyright ©: University of Illinois CS 241 Staff 15

Morbid example

#include <stdlib.h>

#include <signal.h>

int main(int argc, char** argv) {

 while (1) {

 if (fork())

 sleep(30);

 else

 kill(getppid(), SIGKILL);

 }

}

 What does this do?

Copyright ©: University of Illinois CS 241 Staff 16

Signaling

Process 1 Process 2

Kernel 1. Generate

a signal

2. Kernel

representation

3. Deliver

signal

Copyright ©: University of Illinois CS 241 Staff 18

Kernel representation

 A signal is related to a specific process

 In the process’s PCB, kernel stores

 Set of pending signals
 Generated but not yet delivered

 Set of blocked signals
 Will stay pending

 Delivered after unblocked (if ever)

 An action for each signal type
 What to do to deliver the signal

Copyright ©: University of Illinois CS 241 Staff 19

Kernel signaling procedure

 Signal arrives

 Set pending bit for this signal
 Only one bit per signal type!

 Ready to be delivered

 Pick a pending, non-blocked signal and
execute the associated action–one of:
 Ignore

 Kill process

 Execute signal handler specified by process

Copyright ©: University of Illinois CS 241 Staff 20

Signaling

Process 1 Process 2

Kernel 1. Generate

a signal

2. Kernel

representation

3. Deliver

signal

Copyright ©: University of Illinois CS 241 Staff 21

Delivering a signal

 Kernel may handle it

 SIGSTOP, SIGKILL

 Target process can’t handle these

 They are really messages to the kernel

about a process, rather than to a

process

 For most signals, target process

handles it (if it wants)

Copyright ©: University of Illinois CS 241 Staff 22

If process handles the signal...

Copyright ©: University of Illinois CS 241 Staff 23

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumes

Signal
Mask

Signal mask

 Temporarily prevents select types of

signals from being delivered

 Implemented as a bit array

 Same as kernel’s representation of

pending and blocked signals

Copyright ©: University of Illinois CS 241 Staff 24

SigInt SigQuit SigKill … SigCont SigAbrt

1 0 1 … 1 0

Signal mask example

 Block all signals

sigset_t sigs;

sigfillset(&sigs);

sigprocmask(SIG_SETMASK, &sigs,
NULL);

 See also
 sigemptyset, sigaddset, sigdelset,

sigismember

Copyright ©: University of Illinois CS 241 Staff 25

If it’s not masked, we handle it

 Three ways to handle

 Ignore it
 Different than blocking!

 Kill process

 Run specified signal handler function

 One of these is the default

 Depends on signal type

 Tell the kernel what we want to do:
signal() or sigaction()

Copyright ©: University of Illinois CS 241 Staff 26

sigaction

#include <signal.h>

int sigaction(int signum, const struct sigaction

*act, struct sigaction *oldact);

 Change the action taken by a process on receipt of a specific

signal

 Notes

 Any valid signal except SIGKILL and SIGSTOP

 If act is non-null, new action is installed from act

 If oldact is non-null, previous action is saved in oldact

 Any

Copyright ©: University of Illinois CS 241 Staff 27

Example: Catch control-c

#include <stdio.h>

#include <signal.h>

void handle(int sig) {

 char handmsg[] = "Ha! Blocked!\n";

 int msglen = sizeof(handmsg);

 write(2, handmsg, msglen);

}

Copyright ©: University of Illinois CS 241 Staff 28

Example: Catch control-c

int main(int argc, char** argv) {

 struct sigaction sa;

 sa.sa_handler = handle;

 sa.sa_flags = 0;

 sigemptyset(&sa.sa_mask);

 sigaction(SIGINT, &sa, NULL);

 while (1) {

 printf("Fish.\n");

 sleep(1);

 }

}

Copyright ©: University of Illinois CS 241 Staff 29

Note: Need to

check for error

conditions in all

these system &

library calls!

Run demo

Potentially unexpected

behavior

 Only one pending signal of each type at a
time
 If another arrives, it is lost

 What’s an interesting thing that could
happen during a signal handler?
 Another signal arrives!

 Need to either
 Write code that does not assume mutual

exclusion (man sigaction), or

 Block signals during signal handler (signal()
and sigaction() can do this for you)

Copyright ©: University of Illinois CS 241 Staff 30

How to catch without catching

 Can wait for a signal

 No longer an asynchronous event, so no

handler!

 First block all signals

 Then call sigsuspend() or sigwait()

 Atomically unblocks signals and waits until

signal occurs

 Looks a lot like condition variables, eh?

Copyright ©: University of Illinois CS 241 Staff 31

And now back to the puzzle...

 Can we support arbitrary

communication between processes

using only signals?

 Idea

 Even with two signals, we can get 1 bit of

information from receipt of a signal....

Copyright ©: University of Illinois CS 241 Staff 32

