
Copyright ©: University of Illinois CS 241 Staff 1

Interprocess Communication

IPC Solutions

 Two options

 Support some form of shared address

space

 Shared memory, memory mapped files

 Use OS mechanisms to transport data

from one address space to another

 Pipes, FIFOs

 Messages, signals

Copyright ©: University of Illinois CS 241 Staff

Communication Over a Pipe

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Private

address

space

msg msg msg msg msg

msg

msg

msg

msg

msg msg

msg

msg

msg

msg

UNIX Pipes

#include <unistd.h>

int pipe(int fildes[2]);

 Create a message pipe

 Anything can be written to the pipe, and read from the other end

 Data is received in the order it was sent

 OS enforces mutual exclusion: only one process at a time

 Accessed by a file descriptor, like an ordinary file

 Processes sharing the pipe must have same parent in common

 Returns a pair of file descriptors

 fildes[0] is connected to the read end of the pipe

 fildes[1] is connected to the write end of the pipe

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <unistd.h>

int main(void) {

 int pfds[2];

 char buf[30];

 pipe(pfds);

 if (!fork()) {

 printf(" CHILD: writing to pipe\n");

 write(pfds[1], "test", 5);

 printf(" CHILD: exiting\n");

 exit(0);

 } else {

 printf("PARENT: reading from pipe\n");

 read(pfds[0], buf, 5);

 printf("PARENT: read \"%s\"\n", buf);

 wait(NULL);

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff

fildes[0] = read end of the pipe

fildes[1] = write end of the pipe

Duplicating a file descriptor

#include <unistd.h>

int dup(int oldfd);

 Create a copy of an open file descriptor

 Returns:
 Return value 0 : Success - New file descriptor on success

 Return value = -1: Error, check value of errno

 Parameters:

 oldfd: the open file descriptor to be duplicated

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example: ls | wc -l

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void) {

 int pfds[2];

 pipe(pfds);

 if (!fork()) {

 close(1); /* close stdout */

 dup(pfds[1]); /* make stdout pfds[1] */

 close(pfds[0]); /* don't need this */

 execlp("ls", "ls", NULL);

 } else {

 close(0); /* close stdin */

 dup(pfds[0]); /* make stdin pfds[0] */

 close(pfds[1]); /* don't need this */

 execlp("wc", "wc", "-l", NULL);

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff

Run demo

fildes[0] = read end of the pipe

fildes[1] = write end of the pipe

FIFOs

 A pipe disappears when no process has it open

 FIFOs = named pipes

 Special pipes that persist even after all the processes

have closed them

 Actually implemented as a file

#include <sys/types.h>

#include <sys/stat.h>

int status;

...

status = mkfifo("/home/cnd/mod_done", /* mode=0644 */

 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH);

Copyright ©: University of Illinois CS 241 Staff

Communication Over a FIFO

 First open blocks until second process opens the FIFO

 Can use O_NONBLOCK flag to make operations non-blocking

 FIFO is persistent : can be used multiple times

 Like pipes, OS ensures atomicity of writes and reads

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Private

address

space

FIFO Example: Producer-

Consumer

 Producer

 Writes to fifo

 Consumer

 Reads from fifo

 Outputs data to file

 Fifo

 Ensures atomicity of write

Copyright ©: University of Illinois CS 241 Staff

FIFO Example

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/stat.h>

#include "restart.h"

int main (int argc, char *argv[]) {

 int requestfd;

 if (argc != 2) { /* name of consumer fifo on the command line */

 fprintf(stderr, "Usage: %s fifoname > logfile\n", argv[0]);

 return 1;

 }

Copyright ©: University of Illinois CS 241 Staff

FIFO Example

 /* create a named pipe to handle incoming requests */

 if ((mkfifo(argv[1], S_IRWXU | S_IWGRP| S_IWOTH) == -1)

 && (errno != EEXIST))

 {

 perror("Server failed to create a FIFO");

 return 1;

 }

 /* open a read/write communication endpoint to the pipe */

 if ((requestfd = open(argv[1], O_RDWR)) == -1) {

 perror("Server failed to open its FIFO");

 return 1;

 }

 /* Write to pipe like you would to a file */

 ...

}

Copyright ©: University of Illinois CS 241 Staff

What if there are multiple producers?

CS 241 Copyright ©: University of Illinois CS 241 Staff 13

Select and Poll

 Checking for input with select/poll
 Similar functions

 Parameters
 Set of file descriptors

 Set of events for each descriptor

 Timeout length

 Return value
 Set of file descriptors

 Events for each descriptor

 Notes
 Select is somewhat simpler

 Poll supports more events

CS 241 Copyright ©: University of Illinois CS 241 Staff 14

Select and Poll: Prototypes

 Select

 Wait for readable/writable file descriptors
#include <sys/time.h>

int select (int num_fds, fd_set* read_set, fd_set*

write_set, fd_set* except_set, struct timeval*

timeout);

 Poll

 Poll file descriptors for events
#include <poll.h>

int poll (struct pollfd* pfds, nfds_t nfds, int

timeout);

CS 241 Copyright ©: University of Illinois CS 241 Staff 15

Select

int select (int num_fds, fd_set* read_set, fd_set*

write_set, fd_set* except_set, struct timeval*

timeout);

 Wait for readable/writable file descriptors.

 Return:

 Number of descriptors ready

 -1 on error, sets errno

 Parameters:
 num_fds:

 number of file descriptors to check, numbered from 0

 read_set, write_set, except_set:

 Sets (bit vectors) of file descriptors to check for the specific condition

 timeout:

 Time to wait for a descriptor to become ready

CS 241 Copyright ©: University of Illinois CS 241 Staff 16

File Descriptor Sets

 Bit vectors

 Often 1024 bits, only first num_fds checked

 Macros to create and check sets

fds_set myset;

void FD_ZERO (&myset); /* clear all bits */

void FD_SET (n, &myset); /* set bits n to 1 */

void FD_CLEAR (n, &myset); /* clear bit n */

int FD_ISSET (n, &myset); /* is bit n set? */

CS 241 Copyright ©: University of Illinois CS 241 Staff 17

File Descriptor Sets

 Three conditions to check for

 Readable

 Data available for reading

 Writable

 Buffer space available for writing

 Exception

 Out-of-band data available (TCP)

CS 241 Copyright ©: University of Illinois CS 241 Staff 18

Select: Example

fd_set my_read;

FD_ZERO(&my_read);

FD_SET(0, &my_read);

if (select(1, &my_read, NULL, NULL) == 1) {

 ASSERT(FD_ISSET(0, &my_read);

 /* data ready on stdin */

CS 241 Copyright ©: University of Illinois CS 241 Staff 19

Poll

#include <poll.h>

int poll (struct pollfd* pfds, nfds_t nfds, int

timeout);

 Poll file descriptors for events.

 Return:

 Number of descriptors with events

 -1 on error, sets errno

 Parameters:
 pfds:

 An array of descriptor structures. File descriptors, desired events and returned
events

 nfds:

 Length of the pfds array

 timeout:

 Timeout value in milliseconds

CS 241 Copyright ©: University of Illinois CS 241 Staff 20

Descriptors

 Structure
struct pollfd {

 int fd; /* file descriptor */

 short events; /* queried event bit mask */

 short revents; /* returned event mask */

 Note:

 Any structure with fd < 0 is skipped

CS 241 Copyright ©: University of Illinois CS 241 Staff 21

Event Flags

 POLLIN:

 data available for reading

 POLLOUT:

 Buffer space available for writing

 POLLERR:

 Descriptor has error to report

 POLLHUP:

 Descriptor hung up (connection closed)

 POLLVAL:

 Descriptor invalid

CS 241 Copyright ©: University of Illinois CS 241 Staff 22

Poll: Example

struct pollfd my_pfds[1];

my_pfds[0].fd = 0;

my_pfds[0].events = POLLIN;

if (poll(&my_pfds, 1, INFTIM) == 1) {

 ASSERT (my_pfds[0].revents & POLLIN);

 /* data ready on stdin */

IPC Solutions

 Two options

 Support some form of shared address

space

 Shared memory, memory mapped files

 Use OS mechanisms to transport data

from one address space to another

 Pipes, FIFOs

 Messages, signals

Copyright ©: University of Illinois CS 241 Staff

Message-based IPC

 Message system

 Enables communication without resorting to
shared variables

 To communicate, processes P and Q must

 Establish a communication link between them

 Exchange messages

 Two operations

 send(message)

 receive(message)

Copyright ©: University of Illinois CS 241 Staff

Message Passing

Copyright ©: University of Illinois CS 241 Staff

Process A Process B

Direct

Process A Process C

Indirect

Process B

Direct Message Passing

 Processes must name each other explicitly
 send (P, message)

 Send a message to process P

 receive(Q, message)
 Receive a message from process Q

 receive(&id, message)
 Receive a message from any process

 Link properties
 Established automatically

 Associated with exactly one pair of processes

 There exists exactly one link between each pair

 Limitation
 Must know the name or ID of the process(es)

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Process names a mailbox (or port)

 Each mailbox has a unique id

 Processes can communicate only if they share a
mailbox

 Link properties

 Established only if processes share a common
mailbox

 May be associated with many processes

 Each pair of processes may share multiple links

 Link may be unidirectional or bi-directional

Copyright ©: University of Illinois CS 241 Staff

Mailbox Ownership

 Process

 Only the owner receives messages through

mailbox

 Other processes only send.

 When process terminates, any “owned”

mailboxes are destroyed

 System

 Process that creates mailbox owns it (and so

may receive through it) but may transfer

ownership to another process.

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Mailboxes are a resource

 Create and Destroy

 Primitives

 send(A, message)

 Send a message to mailbox A

 receive(A, message)

 Receive a message from mailbox A

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Mailbox sharing
 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Options
 Allow a link to be associated with at most two

processes

 Allow only one process at a time to execute a
receive operation

 Allow the system to arbitrarily select the receiver
and notify the sender

Copyright ©: University of Illinois CS 241 Staff

IPC and Synchronization

 Blocking == synchronous
 Blocking send

 Sender blocks until the message is received

 Blocking receive
 Receiver blocks until a message is available

 Non-blocking == asynchronous
 Non-blocking send

 Sender sends the message and continues

 Non-blocking receive
 Receiver receives a valid message or null

Copyright ©: University of Illinois CS 241 Staff

Buffering

 IPC message queues

1. Zero capacity
 No messages may be queued

 Sender must wait for receiver

2. Bounded capacity
 Finite buffer of n messages

 Sender blocks if link is full

3. Unbounded capacity
 Infinite buffer space

 Sender never blocks

Copyright ©: University of Illinois CS 241 Staff

Buffering

 Is a buffer needed?
P1: send(P2, x) P2: receive(P1, x)

 receive(P2, y) send(P1, y)

 Is a buffer needed?
P1: send(P2, x) P2: send(P1, x)

 receive(P2, y) receive(P1, y)

Copyright ©: University of Illinois CS 241 Staff

Example: Message Passing

void Producer() {

 while (TRUE) {

 /* produce item */

 build_message(&m, item);

 send(consumer, &m);

 receive(consumer, &m); /* wait for ack */

 }

}

void Consumer {

 while(TRUE) {

 receive(producer, &m);

 extract_item(&m, &item);

 send(producer, &m); /* ack */

 /* consume item */

 }

}

Copyright ©: University of Illinois CS 241 Staff

Signals == Messages

 Signals are a simple form of message

passing

 Non-blocking

 No buffering

Copyright ©: University of Illinois CS 241 Staff

