
Copyright ©: University of Illinois CS 241 Staff 1

Interprocess Communication

Interprocess Communciation

 What is IPC?

 Mechanisms to transfer data between

processes

 Why is it needed?

 Not all important procedures can be

easily built in a single process

Copyright ©: University of Illinois CS 241 Staff

Interprocess Communication

 Cooperating processes

 Can affect or be affected by other
processes, including sharing data
 Just like cooperating threads!

 Benefits
 Information sharing

 Computation speedup

 Modularity

 Convenience

Copyright ©: University of Illinois CS 241 Staff

Interprocess Communication

 Can you think of a common use of

IPC?

 Can you think of any large applications

that use IPC?

Copyright ©: University of Illinois CS 241 Staff

Google Chrome architecture

(figure borrowed from Google)

 Separate processes for

browser tabs to protect

the overall application

from bugs and glitches

in the rendering engine

 Restricted access from

each rendering engine

process to others and to

the rest of the system

Copyright ©: University of Illinois CS 241 Staff

ht
tp

s:
//s

ite
s.

go
og

le
.c

om
/a

/c
hr

om
iu

m
.o

rg
/d

ev
/d

ev
el

op
er

s/
de

si
gn

-d
oc

um
en

ts
/m

ul
ti-

pr
oc

es
s-

ar
ch

ite
ct

ur
e

Google Chrome architecture

(figure borrowed from Google)

 A named pipe is

allocated for each

renderer process for

communication with the

browser process

 Pipes are used in

asynchronous mode to

ensure that neither end

is blocked waiting for the

other

Copyright ©: University of Illinois CS 241 Staff

ht
tp

s:
//s

ite
s.

go
og

le
.c

om
/a

/c
hr

om
iu

m
.o

rg
/d

ev
/d

ev
el

op
er

s/
de

si
gn

-d
oc

um
en

ts
/m

ul
ti-

pr
oc

es
s-

ar
ch

ite
ct

ur
e

IPC Communications Model

 Each process has a private address space

 No process can write to another process’s space

 How can we get data from process A to process B?

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Private

address

space

IPC Solutions

 Two options

 Support some form of shared address

space

 Shared memory, memory mapped files

 Use OS mechanisms to transport data

from one address space to another

 Pipes, FIFOs

 Messages, signals

Copyright ©: University of Illinois CS 241 Staff

Shared Memory

 Processes share the same segment of

memory directly

 Memory is mapped into the address space of

each sharing process

 Memory is persistent beyond the lifetime of the

creating or modifying processes (until deleted)

 Mutual exclusion must be provided by

processes using the shared memory

Copyright ©: University of Illinois CS 241 Staff

Shared Memory

 Processes request the segment

 OS maintains the segment

 Processes can attach/detach the segment

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Private

address

space

Process A Process B

Private

address

space

Shared

segment

Shared Memory

 Can mark segment for deletion on last
detach

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Shared

segment

Private

address

space

Private

address

space

POSIX Shared Memory

#include <sys/types.h>

#include <sys/shm.h>

 Create identifier (“key”) for a shared memory
segment

 key_t ftok(const char *pathname, int proj_id);

k = ftok(“/my/file”, 0xaa);

 Create shared memory segment
 int shmget(key_t key, size_t size, int shmflg);

id = shmget(key, size, 0644 | IPC_CREAT);

 Access to shared memory requires an attach
 void *shmat(int shmid, const void *shmaddr, int shmflg);

shared_memory = (char *) shmat(id, (void *) 0, 0);

Copyright ©: University of Illinois CS 241 Staff

POSIX Shared Memory

 Write to the shared memory using normal system

calls
sprintf(shared_memory, "Writing to shared

memory");

 Detach the shared memory from its address space
int shmdt(const void *shmaddr);

shmdt(shared_memory);

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define SHM_SIZE 1024 /* a 1K shared memory segment */

int main(int argc, char *argv[]) {

 key_t key;

 int shmid;

 char *data;

 int mode;

 Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

 /* make the key: */

 if ((key = ftok("shmdemo.c", 'R')) == -1) {

 perror("ftok");

 exit(1);

 }

 /* connect to (and possibly create) the segment: */

 if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {

 perror("shmget");

 exit(1);

 }

 /* attach to the segment to get a pointer to it: */

 data = shmat(shmid, (void *)0, 0);

 if (data == (char *)(-1)) {

 perror("shmat");

 exit(1);

 }

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

 /* read or modify the segment, based on the command line: */

 if (argc == 2) {

 printf("writing to segment: \"%s\"\n", argv[1]);

 strncpy(data, argv[1], SHM_SIZE);

 } else

 printf("segment contains: \"%s\"\n", data);

 /* detach from the segment: */

 if (shmdt(data) == -1) {

 perror("shmdt");

 exit(1);

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff

Run demo

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files

 Memory-mapped file I/O

 Map a disk block to a page in memory

 Allows file I/O to be treated as routine memory access

 Use

 File is initially read using demand paging

 When needed, a page-sized portion of the file is read from

the file system into a physical page of memory

 Subsequent reads/writes to/from that page are treated as

ordinary memory accesses

OK, we haven’t really

talked about memory yet,

so bear with us …

Memory Mapped Files

 Traditional File I/O

 Calls to file I/O functions (e.g., read() and

write())

 First copy data to a kernel's intermediary buffer

 Then transfer data to the physical file or the process

 Intermediary buffering is slow and expensive

 Memory Mapping
 Eliminate intermediary buffering

 Significantly improve performance

Copyright ©: University of Illinois CS 241 Staff

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files

Memory Mapped File

In Blocks

VM of User 1

mmap requests

Disk

File

Blocks of data

From file mapped

To VM

VM of User 2

Blocks of data

From file mapped

To VM

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files:

Benefits

 Treats file I/O like memory access rather than
read(), write() system calls

 Simplifies file access; e.g., no need to fseek()

 Streamlining file access

 Access a file mapped into a memory region via pointers

 Same as accessing ordinary variables and objects

 Dynamic loading
 Map executable files and shared libraries into address space

 Programs can load and unload executable code sections

dynamically

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files:

Benefits

 Several processes can map the same file

 Allows pages in memory to be shared -- saves memory

space

 Memory persistence

 Enables processes to share memory sections that persist

independently of the lifetime of a certain process

Enables IPC!

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file

 Establish mapping from the address space of the process to the

object represented by the file descriptor

 Parameters:

 addr: the starting memory address into which to map the file

 len: the length of the data to map into memory

 prot: the kind of access to the memory mapped region

 flags: flags that can be set for the system call

 fd: file descriptor

 off: the offset in the file to start mapping from

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file

 Establish mapping from the address space of the process to the

object represented by the file descriptor

File fd

len off

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file

 Establish a mapping between the address space of the process

to the memory object represented by the file descriptor

 Return value: pointer to mapped region

 On success, implementation-defined function of addr and

flags.

 On failure, sets errno and returns MAP_FAILED

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file

 Establish a mapping between the address space of the process

to the memory object represented by the file descriptor

File fd

Memory

addr

len off

Copyright ©: University of Illinois CS 241 Staff

mmap options

 Protection Flags

 PROT_READ Data can be read

 PROT_WRITE Data can be written

 PROT_EXEC Data can be executed

 PROT_NONE Data cannot be accessed

 Flags

 MAP_SHARED Changes are shared.

 MAP_PRIVATE Changes are private.

 MAP_FIXED Interpret addr exactly

Copyright ©: University of Illinois CS 241 Staff

mmap Example

 Map first 4kb of file and read an integer
#include <errno.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

 int fd;

 void *pregion;

 if (fd = open(argv[1], O_RDONLY) <0) {

 perror("failed on open");

 return –1;

 }

 write(fd,"\0",1); // make sure at least 1 page is mapped

Copyright ©: University of Illinois CS 241 Staff

mmap Example

 pregion = mmap(NULL, 4096, PROT_READ,

 MAP_SHARED, fd, 0);

 if (pregion == MAP_FAILED) {

 perror("mmap failed")

 return –1;

 }

 close(fd); /* close the physical file */

 /* access mapped memory; read the first int in

 * the mapped file */

 int val = *((int*) pregion);

}

Copyright ©: University of Illinois CS 241 Staff

munmap

#include <sys/mman.h>

int munmap(void *addr, size_t len);

 Remove a mapping

 Return value

 0 on success

 -1 on error, sets errno

 Parameters:

 addr: returned from mmap()

 len: same as the len passed to mmap()

Copyright ©: University of Illinois CS 241 Staff

msync

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

 Write all modified data to permanent storage locations

 Return value

 0 on success

 -1 on error, sets errno

 Parameters:

 addr: returned from mmap()

 len: same as the len passed to mmap()

 flags:

 MS_ASYNC = Perform asynchronous writes

 MS_SYNC = Perform synchronous writes

 MS_INVALIDATE = Invalidate cached data

31 Copyright ©: University of Illinois CS 241 Staff

Example 2: Shared memory
using mmap

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <fcntl.h>

#include <string.h>

#include <sys/mman.h>

#include <sys/types.h>

int main(int argc, char** argv) {

 int fd;

 char * shared_mem;

 fd = open(argv[1], O_RDWR | O_CREAT);

 write(fd,"\0",1); // make sure at least 1 page is mapped

 shared_mem = mmap(NULL, 10, PROT_READ | PROT_WRITE,

 MAP_SHARED, fd, 0);

 close(fd);

32 Copyright ©: University of Illinois CS 241 Staff

Example 2: Shared memory
using mmap

 if (!strcmp(argv[2], "read")) {

 while (1) {

 printf("%s\n", shared_mem);

 sleep(1);

 }

 }

Reader

 else { while (1)

scanf("%s\n", shared_mem); }

}

Writer

Run demo

Copyright ©: University of Illinois CS 241 Staff

Recall POSIX Shared Mem...

#include <sys/shm.h>

int shmget(key_t key, size_t size, int
shmflg);

 Create shared memory segment
id = shmget(key, size, 0644 | IPC_CREAT);

void *shmat(int shmid, const void

*shmaddr, int shmflg);

 Access to shared memory requires an attach
shared_memory = (char *) shmat(id, (void

*) 0, 0);

34 Copyright ©: University of Illinois CS 241 Staff

How do mmap and POSIX

shared memory compare?

 Persistence

 shm memory kept in memory

 Remains available until system is shut down

 mmap backed by a file

 Persists even after programs quit or machine

reboots

34

Copyright ©: University of Illinois CS 241 Staff

Memory mapped files and

virtual memory

It might be interesting to map

a page-sized file …

Memory Mapped File

In Blocks

VM of User 1

mmap requests

Disk

File

Blocks of data

From file mapped

To VM

VM of User 2

Blocks of data

From file mapped

To VM

Copyright ©: University of Illinois CS 241 Staff

Memory mapped files and

virtual memory

#include <unistd.h>

long sysconf(int name);

 Determine the current value of a configurable system variable

 Return value

 0 on success

 -1 on error, sets errno

 Parameters:

 name: the system variable to be queried
 _SC_PAGESIZE

Copyright ©: University of Illinois CS 241 Staff

sysconf: Creating page-sized

memory mapped segments

#include <errno.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/mman.h>

main(void) {

 size_t bytesWritten = 0;

 int fd;

 int PageSize;

 const char text = "This is a test";

Copyright ©: University of Illinois CS 241 Staff

Example

 if ((PageSize = sysconf(_SC_PAGE_SIZE)) < 0) {

 perror("sysconf() Error=");

 return -1;

 }

 fd = open("/tmp/mmsyncTest", (O_CREAT | O_TRUNC |

 O_RDWR), (S_IRWXU | S_IRWXG | S_IRWXO));

 if (fd < 0) {

 perror("open() error");

 return fd;

 }

 off_t lastoffset = lseek(fd, PageSize, SEEK_SET);

 bytesWritten = write(fd, "x", 1);

 if (bytesWritten != 1) {

 perror("write error. ");

 return -1;

 }

Copyright ©: University of Illinois CS 241 Staff

More Examples

 /* mmap the file. */

 void *address;

 int len;

 off_t my_offset = 0;

 len = PageSize;

 /* Map one page */

 address = mmap(NULL, len, PROT_WRITE, MAP_SHARED, fd,

 my_offset);

 if (address == MAP_FAILED) {

 perror("mmap error.");

 return -1;

 }

Copyright ©: University of Illinois CS 241 Staff

More Examples

 /* Move some data into the file using memory map. */

 (void) strcpy((char*) address, text);

 /* use msync to write changes to disk. */

 if (msync(address, PageSize , MS_SYNC) < 0) {

 perror("msync failed with error:");

 return -1;

 } else

 (void) printf("%s","msync completed successfully.");

 close(fd);

 unlink("/tmp/msyncTest");

}

Run demo

Copyright ©: University of Illinois CS 241 Staff

Illegal Memory Access

 Use signals!

 SIGSEGV signal allows you to catch

references to memory that have the

wrong protection mode

 Coming soon... signals!

