Copyright ©: University of lllinois CS 241 Staff

[Deadlock]

[Deadlock]

GRIDLOCK!

Deadlock Definition

Deadlocked process
o Waiting for an event that will never occur

o Typically, but not necessatrily, involves
more than one process

A set of processes is deadlocked if each
process in the set is waiting for an event that
only another process in the set can cause

How can a single process deadlock itself?

Copyright ©: University of lllinois CS 241 Staff

[Deadlock: One-lane Bridge

Traffic only in one direction
Each section of a bridge can be viewed as a resource

What can happen?

Copyright ©: University of lllinois CS 241 Staff

Deadlock: One-lane Bridge

Traffic only in one direction
Each section of a bridge can be viewed as a resource

Deadlock
o Resolved if cars back up (preempt resources and rollback)
o Several cars may have to be backed up

Copyright ©: University of lllinois CS 241 Staff

Deadlock: One-lane Bridge

Traffic only in one direction
Each section of a bridge can be viewed as a resource
Deadlock

o Resolved if cars back up (preempt resources and rollback)
o Several cars may have to be backed up

But, starvation is possible
Note
o Most OSes do not prevent or deal with deadlocks

Copyright ©: University of lllinois CS 241 Staff

Deadlock: One-lane Bridge

| always have to
back up!

» Deadlock vs. Starvation

o Starvation = Indefinitely postponed

= Delayed repeatedly over a long period of time while
the attention of the system is given to other processes

= Logically, the process may proceed but the system
never gives it the CPU

Copyright ©: University of lllinois CS 241 Staff

—)
—)

Addressing Deadlock

Prevention
o Design the system so that deadlock is impossible

Detection & Recovery

o Check for deadlock (periodically or sporadically) and
identify and which processes and resources involved

o Recover by killing one of the deadlocked processes and
releasing its resources

Avoidance

o Construct a model of system states, then choose a
strategy that, when resources are assigned to processes,
will not allow the system to go to a deadlock state

Manual intervention
o Have the operator reboot the machine if it seems too slow

Copyright ©: University of lllinois CS 241 Staff 9]

Necessary Conditions for
Deadlock

Mutual exclusion

o Processes claim exclusive control of the resources
they require

Hold-and-wait (a.k.a. wait-for) condition

o Processes hold resources already allocated to them
while waiting for additional resources

No preemption condition

o Resources cannot be removed from the processes
holding them until used to completion

Circular wait condition

o A circular chain of processes exists in which each
process holds one or more resources that are
requested by the next process in the chain

Copyright ©: University of lllinois CS 241 Staff

[Dining Philosophers had it all

Mutual exclusion
o Exclusive use of forks

Hold and wait condition &S@ O
o Hold 1 fork, wait for next (ﬁ

No preemption condition e
o Cannot force another to Q
undo their hold @ D
Circular walit condition
o Each waits for next neighbor é

to put down fork ¢

This is the best one to tackle

Copyright ©: University of lllinois CS 241 Staff 11]

Formalizing circular wait:
[Resource allocation graphs

Nodes - -

P2
o Circle: Processes using requested
R1 R2
o Sqguare: Resources - @
Arcs

o From resource to process = resource
assigned to process

o From process to resource = process
requests (and Is waiting for) resource

Copyright ©: University of lllinois CS 241 Staff

Resource allocation graphs

P1 acquires P1 requests
Nodes = R2
o Circle: Processes -~ Circu_lar
o Square: Resources wait [F2

P2 @ P2
DeadIOCk requests R1 acquires R2

o Processes P1 and P2 are in deadlock
over resources R1 and r2

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

define N 5

void philosopher (int i) ({
while (TRUE) {

think () ;
take fork(i);
take fork((i+1l)%N) ;
eat(); /* yummy */
put fork(i);
put fork ((i+l) 3N) ;

} Poicererie

Copyright ©: University of lllinois CS 241 Staff

resource allocation graph

If we use the trivial broken

solution’... hercenn

One node per philosopher @ﬁ
One node per fork /%%J

— Everyone tries to pick up left

fO I'k Descacres @

= Request edges =

[Dining Philosophers

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

One node per philosopher
One node per fork

— Everyone tries to pick up left
fork

— Everyone succeeds

Poicererie

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

One node per philosopher
One node per fork

— Everyone tries to pick up left
fork

— Everyone succeeds

= Assignment edges

Locisrerte

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

One node per philosopher
One node per fork

— Everyone tries to pick up left
fork

— Everyone succeeds

= Everyone tries to pick up
right fork

— Request edges

Locisrerte

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

One node per philosopher
One node per fork

—Everyone tries to pick up left
fork

— Everyone succeeds

—Everyone tries to pick up right
fork

= Cycle = deadlock

Locisrerte

Copyright ©: University of lllinois CS 241 Staff

[Default Solution: Be an Ostrich

Approach

O
O

Rationale

O

DO nothing!
Deadlocked processes stay stuck

Keeps the common path faster and more
reliable

Deadlock prevention, avoidance and
detection/recovery are expensive

If deadlock is rare, is it worth the overhead?

Copyright ©: University of lllinois CS 241 Staff 21]

[Deadlock Prevention

Prevent any one of the 4 conditions
o Mutual exclusion

o Hold-and-walit

o No preemption

o Circular wait

Copyright ©: University of lllinois CS 241 Staff

Mutual Exclusion

Processes claim exclusive control of
the resources they require

How to break it?

Copyright ©: University of lllinois CS 241 Staff

Mutual Exclusion

Processes claim exclusive control of
the resources they require

How to break it?

o Non-exclusive access only
Read-only access

o Probably can’t do anything about it for
MOsSt scenarios

But be smart and try to use shared resources
wisely

Copyright ©: University of lllinois CS 241 Staff 24]

[Hold and Wait Condition

Processes hold resources already allocated to
them while waiting for additional resources

How to break it?

Copyright ©: University of lllinois CS 241 Staff

Hold and Wait Condition

Processes hold resources already allocated to
them while waiting for additional resources

How to break it?

o All at once

Force a process to request all resources it needs at
one time

Get all or nothing

o Release and try again

If a process needs to acquire a new resource, it must
first release all resources it holds, then reacquire all it
needs

o Both

Inefficient
Potential of starvation

Copyright ©: University of lllinois CS 241 Staff

No Preemption Condition

Resources cannot be removed from the |
processes holding them until used to completion

How to break it?

Copyright ©: University of lllinois CS 241 Staff

No Preemption Condition

Resources cannot be removed from the |
processes holding them until used to completion

How to break it?

o Letitall go

If a process holding some resources is denied a further
request, that process must release its original resources

Inefficient!

o Take it all away

If a process requests a resource that is held by another
process, the OS may preempt the second process and
force it to release its resources

Waste of CPU and other resources!

Copyright ©: University of lllinois CS 241 Staff

[Circular Walit Condition

A circular chain of processes exists In
which each process holds one or more
resources that are requested by the
next process in the chain

How to break it?

Copyright ©: University of lllinois CS 241 Staff

Circular Wait Condition

A circular chain of processes exists In
which each process holds one or more
resources that are requested by the
next process in the chain

How to break it?

o Guarantee no cycles

Allow processes to access resources only In
Increasing order of resource id

Not really fair ...

Copyright ©: University of lllinois CS 241 Staff 30]

Dining Philosophers solution
with numbered resources

Back to the trivial broken
“solution’...

define N 5

void philosopher (int i) ({
while (TRUE) {

think () ;
take fork(i);
take fork((i+1l)%N) ;
eat(); /* yummy */
put fork(i);
put fork ((i+l) 3N) ;

Locisrerte

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers solution
with numbered resources

Back to the trivial broken
“solution’...

define N 5

void philosopher (int i) ({
while (TRUE) {

think () ;
take fork(i);
take fork((i+1l)%N) ;
eat(); /* yummy */
put fork(i);
put fork ((i+l) 3N) ;

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers solution
with numbered resources

Back to the trivial broken
“solution’...

define N 5

void philosopher (int i) ({
while (TRUE) {

think () ;
take fork(i);
take fork((i+1l)%N) ;
eat(); /* yummy */
put fork(i);
put fork ((i+l) 3N) ;

} Poicererie

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers solution
with numbered resources

Instead, number resources...

First request lower numbered fork herenin
define N 5

void philosopher (int i) ({
while (TRUE) ({

think () ;
take fork (LOWER(1i)) ;
take fork (HIGHER(i)) ;
eat(); /* yummy */
put fork (LOWER(i)) ;
put fork (HIGHER(i)) ;

Locisrerte

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers solution
with numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) ({
while (TRUE) {

escaxres ;al'pe
think () ; 2 4
take fork (LOWER(1i)) ; 3

take fork (HIGHER(i)) ;

eat(); /* yummy */ x @

put fork (LOWER(i)) ;
put fork (HIGHER(i)) ;

} Locisrerte

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers solution
with numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) ({
while (TRUE) ({

think () ;
take fork (LOWER(1i)) ;
take fork (HIGHER(i)) ;
eat(); /* yummy */
put fork (LOWER(i)) ;
put fork (HIGHER(i)) ;

} Locisrerte

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers solution
with numbered resources

Instead, number resources...

One philosopher can eat!
define N 5

void philosopher (int i) ({
while (TRUE) ({

think () ;
take fork (LOWER(1i)) ;
take fork (HIGHER(i)) ;
eat(); /* yummy */
put fork (LOWER(i)) ;
put fork (HIGHER(i)) ;

Locisrerte

Copyright ©: University of lllinois CS 241 Staff

Ordered resource requests
[prevent deadlock

Without numberi

Copyright ©: University of lllinois CS 241 Staff

Ordered resource requests
[prevent deadlock

With numbering

@ —)\
o — eo—
\‘_
Contradiction:

Should have
requested 3 first!

Copyright ©: University of lllinois CS 241 Staff

Are we always In trouble
[Without ordering resources?

Not always

o—El e — [l

Ne—B<

Ordered resource requests are sufficient
to avoid deadlock, but not necessary

Convenient, but may be conservative

Copyright ©: University of lllinois CS 241 Staff

[Deadlock Detection

Check to see If a deadlock has
occurred!

Single resource per type

o Can use wait-for graph

o Check for cycles
How?

Copyright ©: University of lllinois CS 241 Staff

[Wait for Graphs

Easier to find
cycles on this

graph
O
Resource Corresponding Wait
Allocation Graph For Graph

Copyright ©: University of lllinois CS 241 Staff 42 ﬂ

[Deadlock Recovery]

= Getrid of the
cycles in the walit
for graph

= How many cycles
are there?

Copyright ©: University of lllinois CS 241 Staff

Deadlock Recovery

Options

O

Kill all deadlocked processes and release
resources

Kill one deadlocked process at a time and
release its resources

Steal one resource at a time

Rollback all or one of the processes to a
checkpoint that occurred before they
requested any resources

Difficult to prevent indefinite postponement

Copyright ©: University of lllinois CS 241 Staff

Deadlock Recovery

Have to Kkill
one more
O
Resource Corresponding Wait
Allocation Graph For Graph

Copyright ©: University of lllinois CS 241 Staff 45]

Deadlock Recovery

Only have
to kill one

O
Resource Corresponding Wait
Allocation Graph For Graph

Copyright ©: University of lllinois CS 241 Staff 46]

Deadlock Recovery: Process
Termination

How should the aborted process be chosen?

O

O
O
O

Process priority
Current computation time and time to completion
Amount of resources used by the process

Amount of resources needed by the process to
complete

If this process is terminated, how many other
processes will need to be terminated?

Is process interactive or batch?

Copyright ©: University of lllinois CS 241 Staff

Deadlock Recovery: Resource
[Preemption

Selecting a victim
o Minimize cost

Rollback

o Return to some safe state
o Restart process for that state

Challenge: Starvation

o Same process may always be picked as
victim

o Fix: Include number of rollbacks in cost
factor

Copyright ©: University of lllinois CS 241 Staff

Deadlock Avoidance

Multiple instance of each Resources
o Requires the maximum number of each resource needed

for each process

For each resource i, p.Max[i] = maximum number of
instances of i that p can request

Basic idea
o Resource manager tries to see the worst case that could
happen

o It does not grant an incremental resource request to a
process if this allocation might lead to deadlock

Approach
o Define a model of system states (SAFE, UNSAFE)

o Choose a strategy that guarantees that the system will not
go to a deadlock state

Copyright ©: University of lllinois CS 241 Staff 49]

Safe vs. Unsafe

Safe

o Guarantee

There is some scheduling order in which every process can run
to completion even if all of them suddenly and simultaneously
request their maximum number of resources

o From a safe state
The system can guarantee that all processes will finish

Unsafe state: no such guarantee

o A deadlock state is an unsafe state

o An unsafe state may not be a deadlock state
o Some process may be able to complete
Overall

O a conservative/pessimistic approach

Copyright ©: University of lllinois CS 241 Staff

[How to Compute Safety

Banker’s Algorithm (Dijkstra, 1965)

o Each customer tells banker the maximum
number of resources it needs, before It
starts

o Customer borrows resources from banker
o Customer returns resources to banker

o Banker only lends resources Iif the
system will stay Iin a safe state after the
loan

Copyright ©: University of lllinois CS 241 Staff

