
Classical Synchronization 

Problems 
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Reader-Writer Problem 

 Readers read data 

 Writers write data 

 Rules 
 Multiple readers may read the data simultaneously 

 Only one writer can write the data at any time 

 A reader and a writer cannot access data simultaneously 

 Locking table 
 Whether any two can be in the critical section 

simultaneously 
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Reader Writer 

Reader  OK No 

Writer No No 



 Customers 
 N chairs for waiting 

 Barber 
 Can cut one customer’s 

hair at any time 

 No waiting customer => 
barber sleeps 

 Customer enters  
 If all waiting chairs full, 

customer leaves 

 If barber asleep, wake up 
barber and get hair cut 

 Otherwise (barber is 
busy), wait in a chair 
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Sleeping Barber 



barber { 

   while (TRUE) { 

      semWait(customers); 

      mutexLock(lock); 

      waiting = waiting–1; 

      semSignal(barbers); 

      mutexUnlock(lock); 

      cutHair(); 

  } 

} 

Sleeping Barber 

customer { 

   mutexLock(lock); 

   if (waiting < chairs) { 

   waiting = waiting+1; 

   semSignal(customers); 

   mutexUnlock(lock); 

   semWait(barbers); 

   getHaircut(); 

   else { 

   mutexUnlock(lock); 

}  

#define CHAIRS 5 

semaphore customers, barbers; 

mutex lock 

int waiting 

What is the shared data? 
What part protects the shared data? 
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barber { 

   while (TRUE) { 

      semWait(customers); 

      mutexLock(lock); 

      waiting = waiting–1; 

      semSignal(barbers); 

      mutexUnlock(lock); 

      cutHair(); 

  } 

} 

Sleeping Barber 

customer { 

   mutexLock(lock); 

   if (waiting < chairs) { 

   waiting = waiting+1; 

   semSignal(customers); 

   mutexUnlock(lock); 

   semWait(barbers); 

   getHaircut(); 

   else { 

   mutexUnlock(lock); 

}  

#define CHAIRS 5 

semaphore customers, barbers; 

mutex lock 

int waiting 

What guarantees that not too many 
customer are waiting? 
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barber { 

   while (TRUE) { 

      semWait(customers); 

      mutexLock(lock); 

      waiting = waiting–1; 

      semSignal(barbers); 

      mutexUnlock(lock); 

      cutHair(); 

  } 

} 

Sleeping Barber 

customer { 

   mutexLock(lock); 

   if (waiting < chairs) { 

   waiting = waiting+1; 

   semSignal(customers); 

   mutexUnlock(lock); 

   semWait(barbers); 

   getHaircut(); 

   else { 

   mutexUnlock(lock); 

}  

#define CHAIRS 5 

semaphore customers, barbers; 

mutex lock 

int waiting 

What guarantees that there is 
only one customer in the chair? 
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barber { 

   while (TRUE) { 

      semWait(customers); 

      mutexLock(lock); 

      waiting = waiting–1; 

      semSignal(barbers); 

      mutexUnlock(lock); 

      cutHair(); 

  } 

} 

Sleeping Barber 

customer { 

   mutexLock(lock); 

   if (waiting < chairs) { 

   waiting = waiting+1; 

   semSignal(customers); 

   mutexUnlock(lock); 

   semWait(barbers); 

   getHaircut(); 

   else { 

   mutexUnlock(lock); 

}  

#define CHAIRS 5 

semaphore customers, barbers; 

mutex lock 

int waiting 

What guarantees that the barber 
doesn’t miss a customer? 
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Dining Philosophers 

 N philosophers and N forks 

 Philosophers eat/think 

 Eating needs 2 forks 

 Pick up one fork at a time  
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Dining Philosophers 
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Dining Philosophers: Take 1 

# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(i); 

      take_fork((i+1)%N); 

      eat(); /* yummy */ 

      put_fork(i); 

      put_fork((i+1)%N); 

  } 

} 
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Does this work? 



Dining Philosophers: Take 1 

# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(i); 

      take_fork((i+1)%N); 

      eat(); /* yummy */ 

      put_fork(i); 

      put_fork((i+1)%N); 

  } 

} 
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DEADLOCK! 



What is deadlock? 

 Necessary and sufficient conditions for 
deadlock 

 Mutual exclusion 

 Hold and wait 

 No preemption 

 Circular wait 

 

 Which properties does our solution to 
dining philosophers have? 
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Conditions for Deadlock 

 Mutual exclusion 
 Exclusive use of chopsticks 

 Hold and wait 
 Hold 1 chopstick, wait for next 

 No preemption 
 Cannot force another to release held 

resource 

 Circular wait 
 Each waits for next neighbor to put down 

chopstick 

26 Copyright ©:  University of Illinois CS 241 Staff 



Dining Philosophers: Take 1 

# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(i); 

      take_fork((i+1)%N); 

      eat(); /* yummy */ 

      put_fork(i); 

      put_fork((i+1)%N); 

  } 

} 
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take_forks(i); 

put_forks(i); 

How can we fix this? 



#define N   5 

#define THINKING  0 

#define HUNGRY  1 

#define EATING  2 

#define LEFT   (i – 1)%N 

#define RIGHT   (i + 1)%N 

 

 

int state[N]; 

mutex lock; 

semaphore sem[N]; 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_forks(i); 

      eat(); /* yummy */ 

      put_forks(i); 

  } 

} 

Dining Philosophers: Take 2 
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void take_forks(int i) { 

    mutexLock(lock); 

    state[i] = HUNGRY; 

    test(i); 

    mutexUnlock(lock); 

    semWait(sem[i]); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

/* only called with lock set! 

*/ 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     semSignal(sem[i]); 

  } 

} 

Dining Philosophers: Take 2 
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void take_forks(int i) { 

    mutexLock(lock); 

    state[i] = HUNGRY; 

    test(i); 

    mutexUnlock(lock); 

    semWait(sem[i]); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

/* only called with lock set! 

*/ 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     semSignal(sem[i]); 

  } 

} 

Dining Philosophers: Take 2 
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i 

Try to get  

2 forks 

Block if forks 

not acquired 

Get both forks iff 

neither neighbor 

is hungry 

Signal 

myself 



void take_forks(int i) { 

    mutexLock(lock); 

    state[i] = HUNGRY; 

    test(i); 

    mutexUnlock(lock); 

    semWait(sem[i]); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

/* only called with lock set! 

*/ 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     semSignal(sem[i]); 

  } 

} 

Dining Philosophers: Take 2 
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LEFT 

i 

RIGHT 

Get both forks iff 

neither neighbor 

is hungry 

Signal 

waiting 

philosopher 

Let others 

get a turn 



void take_forks(int i) { 

    mutexLock(lock); 

    state[i] = HUNGRY; 

    test(i); 

    mutexUnlock(lock); 

    semWait(sem[i]); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

/* only called with lock set! 

*/ 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     semSignal(sem[i]); 

  } 

} 

Dining Philosophers: Take 2 
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How do we guarantee that only one 
philosopher is using a given fork? 



void take_forks(int i) { 

    mutexLock(lock); 

    state[i] = HUNGRY; 

    test(i); 

    mutexUnlock(lock); 

    semWait(sem[i]); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

/* only called with lock set! 

*/ 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     semSignal(sem[i]); 

  } 

} 

Dining Philosophers: Take 2 
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How do we guarantee that there is 
no deadlock? 



void take_forks(int i) { 

    mutexLock(lock); 

    state[i] = HUNGRY; 

    test(i); 

    mutexUnlock(lock); 

    semWait(sem[i]); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

/* only called with lock set! 

*/ 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     semSignal(sem[i]); 

  } 

} 

Dining Philosophers: Take 2 
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How do we guarantee that the 
solution is fair? 



void take_forks(int i) { 

    mutexLock(lock); 

    state[i] = HUNGRY; 

    test(i); 

    mutexUnlock(lock); 

    semWait(sem[i]); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

/* only called with lock set! 

*/ 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     semSignal(sem[i]); 

  } 

} 

Dining Philosophers: Take 2 
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What do we need to 
change to solve this with 

condition variables? 



void take_forks(int i) { 

    mutexLock(lock); 

    state[i] = HUNGRY; 

    test(i); 

    mutexUnlock(lock); 

    semWait(sem[i]); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

/* only called with lock set! 

*/ 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     semSignal(sem[i]); 

  } 

} 

Dining Philosophers: Take 2 
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What do we need to 
change to solve this with 

condition variables? 



void take_forks(int i) { 

   mutexLock(lock); 

   state[i] = HUNGRY; 

   test(i); 

   while (state[i]==HUNGRY)  

     condWait(cond[i]); 

   mutexUnlock(lock); 

} 

 

void put_forks(int i) { 

    mutexLock(lock); 

    state[i] = THINKING; 

    test(LEFT); 

    test(RIGHT); 

    mutexUnlock(lock); 

} 

int state[N]; 

mutex lock; 

condition cond[N]; 

 

void test(int i) { 

  if (state[i] == HUNGRY && 

      state[LEFT] != EATING && 

      state[RIGHT] != EATING) { 

     state[i] = EATING; 

     condSignal(cond[i]); 

  } 

} 

Dining Philosophers: with 

Condition Variables 
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 Picking up both left and right chopsticks 
is an atomic operation? 

 That works (i.e., prevents deadlock) 

 This is essentially what we just did! 

 Or, we have N philosophers & N+1 
chopsticks? 

 That works too! 

 And we’ll see another solution later... 

What if... 
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