
Classical Synchronization

Problems

1 Copyright ©: University of Illinois CS 241 Staff

Reader-Writer Problem

 Readers read data

 Writers write data

 Rules
 Multiple readers may read the data simultaneously

 Only one writer can write the data at any time

 A reader and a writer cannot access data simultaneously

 Locking table
 Whether any two can be in the critical section

simultaneously

Copyright ©: University of Illinois CS 241 Staff 2

Reader Writer

Reader OK No

Writer No No

 Customers
 N chairs for waiting

 Barber
 Can cut one customer’s

hair at any time

 No waiting customer =>
barber sleeps

 Customer enters
 If all waiting chairs full,

customer leaves

 If barber asleep, wake up
barber and get hair cut

 Otherwise (barber is
busy), wait in a chair

11 Copyright ©: University of Illinois CS 241 Staff

Sleeping Barber

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

What is the shared data?
What part protects the shared data?

13 Copyright ©: University of Illinois CS 241 Staff

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

What guarantees that not too many
customer are waiting?

15 Copyright ©: University of Illinois CS 241 Staff

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

What guarantees that there is
only one customer in the chair?

17 Copyright ©: University of Illinois CS 241 Staff

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

What guarantees that the barber
doesn’t miss a customer?

19 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers

 N philosophers and N forks

 Philosophers eat/think

 Eating needs 2 forks

 Pick up one fork at a time

21 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers

22 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers: Take 1

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Copyright ©: University of Illinois CS 241 Staff 23

Does this work?

Dining Philosophers: Take 1

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Copyright ©: University of Illinois CS 241 Staff 24

DEADLOCK!

What is deadlock?

 Necessary and sufficient conditions for
deadlock

 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

 Which properties does our solution to
dining philosophers have?

25 Copyright ©: University of Illinois CS 241 Staff

Conditions for Deadlock

 Mutual exclusion
 Exclusive use of chopsticks

 Hold and wait
 Hold 1 chopstick, wait for next

 No preemption
 Cannot force another to release held

resource

 Circular wait
 Each waits for next neighbor to put down

chopstick

26 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers: Take 1

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Copyright ©: University of Illinois CS 241 Staff 27

take_forks(i);

put_forks(i);

How can we fix this?

#define N 5

#define THINKING 0

#define HUNGRY 1

#define EATING 2

#define LEFT (i – 1)%N

#define RIGHT (i + 1)%N

int state[N];

mutex lock;

semaphore sem[N];

void philosopher (int i) {

 while (TRUE) {

 think();

 take_forks(i);

 eat(); /* yummy */

 put_forks(i);

 }

}

Dining Philosophers: Take 2

28 Copyright ©: University of Illinois CS 241 Staff

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

29 Copyright ©: University of Illinois CS 241 Staff

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

30 Copyright ©: University of Illinois CS 241 Staff

i

Try to get

2 forks

Block if forks

not acquired

Get both forks iff

neither neighbor

is hungry

Signal

myself

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

31 Copyright ©: University of Illinois CS 241 Staff

LEFT

i

RIGHT

Get both forks iff

neither neighbor

is hungry

Signal

waiting

philosopher

Let others

get a turn

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

33 Copyright ©: University of Illinois CS 241 Staff

How do we guarantee that only one
philosopher is using a given fork?

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

35 Copyright ©: University of Illinois CS 241 Staff

How do we guarantee that there is
no deadlock?

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

37 Copyright ©: University of Illinois CS 241 Staff

How do we guarantee that the
solution is fair?

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

39 Copyright ©: University of Illinois CS 241 Staff

What do we need to
change to solve this with

condition variables?

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

40 Copyright ©: University of Illinois CS 241 Staff

What do we need to
change to solve this with

condition variables?

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 while (state[i]==HUNGRY)

 condWait(cond[i]);

 mutexUnlock(lock);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

int state[N];

mutex lock;

condition cond[N];

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 condSignal(cond[i]);

 }

}

Dining Philosophers: with

Condition Variables

41 Copyright ©: University of Illinois CS 241 Staff

 Picking up both left and right chopsticks
is an atomic operation?

 That works (i.e., prevents deadlock)

 This is essentially what we just did!

 Or, we have N philosophers & N+1
chopsticks?

 That works too!

 And we’ll see another solution later...

What if...

42 Copyright ©: University of Illinois CS 241 Staff

