
Condition Variables Revisited

Copyright ©: University of Illinois CS 241 Staff 1

Condition Variable

 Without condition variables,

 Threads continually poll to check if the

condition is met

 Busy waiting!

 With condition variables

 Same goal without polling

Copyright ©: University of Illinois CS 241 Staff 2

Inside a condition variable

struct pthread_cond {

 int waiting;

 handle_t semaphore;

};

Copyright ©: University of Illinois CS 241 Staff 3

Number of threads

waiting on the

condition variable

A semaphore for

synchronization

Inside a condition variable

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t

*mutex) {

 atomic_increment(&cond->waiting);

 pthread_mutex_unlock(mutex);

 if (wait(cond->semaphore, INFINITE) < 0)

 return errno;

 atomic_decrement(&cond->waiting);

 pthread_mutex_lock(mutex);

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 4

pthread_mutex_lock is always called before

pthread_cond_wait to acquire lock

H
a
v
e
 l
o
c
k

int pthread_cond_signal(pthread_cond_t

*cond) {

 if (cond->waiting)

 semrel(cond->semaphore, 1);

 return 0;

}

H
a
v
e
 l
o
c
k

Thread always has lock

when returning from
pthread_cond_wait

More Complex Example

 Master thread

 Spawns a number of concurrent slaves

 Waits until all of the slaves have finished to exit

 Tracks current number of slaves executing

 A mutex is associated with count and a

condition variable with the mutex

Copyright ©: University of Illinois CS 241 Staff 5

Example

#include <stdio.h>

#include <pthread.h>

#define NO_OF_PROCS 4

typedef struct _SharedType {

 int count; /* number of active slaves */

 pthread_mutex_t lock; /* mutex for count */

 pthread_cond_t done; /* sig. by finished slave */

} SharedType, *SharedType_ptr;

SharedType_ptr shared_data;

Copyright ©: University of Illinois CS 241 Staff 6

Example: Main

main(int argc, char **argv) {

 int res;

 /* allocate shared data */

 if ((sh_data = (SharedType *)

malloc(sizeof(SharedType))) ==

NULL) {

 exit(1);

 }

 sh_data->count = 0;

 /* allocate mutex */

 if ((res =

pthread_mutex_init(&sh_data-

>lock, NULL)) != 0) {

 exit(1);

 }

/* allocate condition var */

 if ((res =

pthread_cond_init(&sh_data-

>done, NULL)) != 0) {

 exit(1);

 }

 /* generate number of slaves

to create */

 srandom(0);

 /* create up to 15 slaves */

 master((int) random()%16);

}

Copyright ©: University of Illinois CS 241 Staff 7

Example: Main

main(int argc, char **argv) {

 int res;

 /* allocate shared data */

 if ((sh_data = (SharedType *)

malloc(sizeof(SharedType))) ==

NULL) {

 exit(1);

 }

 sh_data->count = 0;

 /* allocate mutex */

 if ((res =

pthread_mutex_init(&sh_data-

>lock, NULL)) != 0) {

 exit(1);

 }

/* allocate condition var */

 if ((res =

pthread_cond_init(&sh_data-

>done, NULL)) != 0) {

 exit(1);

 }

 /* generate number of slaves

to create */

 srandom(0);

 /* create up to 15 slaves */

 master((int) random()%16);

}

Copyright ©: University of Illinois CS 241 Staff 8

pthread_mutex_t data_mutex =

PTHREAD_MUTEX_INITIALIZER;

pthread_cont_t data_cond =

PTHREAD_COND_INITIALIZER;

Example: Master

master(int nslaves) {

 int i;

 pthread_t id;

 for (i = 1; i <= nslaves; i +=

1) {

 pthread_mutex_lock(&sh_data-

>lock);

 /* start slave and detach */

 shared_data->count += 1;

 pthread_create(&id, NULL,

 (void* (*)(void *))slave,

 (void *)sh_data);

 pthread_mutex_unlock(&sh_data-

>lock);

 }

 pthread_mutex_lock(&sh_data-

>lock);

 while (sh_data->count != 0)

 pthread_cond_wait(&sh_data-

>done, &sh_data->lock);

 pthread_mutex_unlock(&sh_data-

>lock);

 printf("All %d slaves have

finished.\n", nslaves);

 pthread_exit(0);

}

Copyright ©: University of Illinois CS 241 Staff 9

Example: Slave

void slave(void *shared) {

 int i, n;

 sh_data = shared;

 printf(“Slave.\n", n);

 n = random() % 1000;

 for (i = 0; i < n; i+= 1)

 Sleep(10);

 /* mutex for shared data */

 pthread_mutex_lock(&sh_data-

>lock);

 /* dec number of slaves */

 sh_data->count -= 1;

 /* done running */

 printf("Slave finished %d

cycles.\n", n);

 /* signal that you are done

working */

 pthread_cond_signal(&sh_data-

>done);

 /* release mutex for shared

data */

 pthread_mutex_unlock(&sh_data-

>lock);

}

Copyright ©: University of Illinois CS 241 Staff 10

Semaphores vs. CVs

Semaphore

 Integer value (>=0)

 Wait does not always
block

 Signal either releases
thread or inc’s counter

 If signal releases
thread, both threads
continue afterwards

Condition Variables

 No integer value

 Wait always blocks

 Signal either releases
thread or is lost

 If signal releases
thread, only one of
them continue

Copyright ©: University of Illinois CS 241 Staff 11

Classical Synchronization

Problems

12 Copyright ©: University of Illinois CS 241 Staff

This lecture

 Goals

 Introduce classical synchronization
problems

 Topics

 Producer-Consumer Problem

 Reader-Writer Problem

 Dining Philosophers Problem

 Sleeping Barber’s Problem

13 Copyright ©: University of Illinois CS 241 Staff

 Chefs cook items and put

them on a conveyer belt

14 Copyright ©: University of Illinois CS 241 Staff

 Waiters pick items
off the belt

 Now imagine

many chefs!

15 Copyright ©: University of Illinois CS 241 Staff

 And many
waiters!

 A potential mess!

16 Copyright ©: University of Illinois CS 241 Staff

Producer-Consumer Problem

 Producers insert items

 Consumers remove items

 Shared resource: bounded buffer

 Efficient implementation: circular buffer

with an insert and a removal pointer

Chef = Producer

Waiter = Consumer

17 Copyright ©: University of Illinois CS 241 Staff

Producer-Consumer

18 Copyright ©: University of Illinois CS 241 Staff

Chef = Producer

Waiter = Consumer

Producer-Consumer

insertPtr

removePtr

19 Copyright ©: University of Illinois CS 241 Staff

Chef = Producer

Waiter = Consumer

What does the

chef do with a

new pizza?

Where does the

waiter take a

pizza from?

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

20 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

insertPtr

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

21 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

22 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

23 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

removePtr

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

24 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

25 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr

removePtr

BUFFER FULL:

Producer must be

blocked!

Chef = Producer

Waiter = Consumer

26 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr
removePtr

Chef = Producer

Waiter = Consumer

27 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

28 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

29 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

30 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

31 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

32 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

33 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

BUFFER EMPTY:

Consumer must be

blocked!

Chef = Producer

Waiter = Consumer

34 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer Summary

 Producer
 Insert items

 Update insertion pointer

 Consumer
 Execute destructive read on the buffer

 Update removal pointer

 Both
 Update information about how full/empty the buffer is

 Solution
 Must allow multiple producers and consumers

Copyright ©: University of Illinois CS 241 Staff 35

Challenges

 Prevent buffer overflow

 Prevent buffer underflow

 Mutual exclusion when modifying the

buffer data structure

36 Copyright ©: University of Illinois CS 241 Staff

Solutions

 Prevent buffer overflow

 Block producer when full

 Counting semaphore to count #free slots

 0 block producer

 Prevent buffer underflow

 Mutual exclusion when modifying the

buffer data structure

37 Copyright ©: University of Illinois CS 241 Staff

Solutions

 Prevent buffer overflow
 Block producer when full

 Counting semaphore to count #free slots

 0 block producer

 Prevent buffer underflow
 Block consumer when empty

 Counting semaphore to count #items in buffer

 0 block consumer

 Mutual exclusion when modifying the buffer
data structure

38 Copyright ©: University of Illinois CS 241 Staff

Solutions

 Prevent buffer overflow
 Block producer when full

 Counting semaphore to count #free slots

 0 block producer

 Prevent buffer underflow
 Block consumer when empty

 Counting semaphore to count #items in buffer

 0 block consumer

 Mutual exclusion when modifying the buffer
data structure
 Mutex protects shared buffer & pointers

39 Copyright ©: University of Illinois CS 241 Staff

Assembling the solution

 Producer
 sem_wait(slots), sem_signal(slots)

 Initialize slots to N

 Consumer
 sem_wait(items), sem_signal(items)

 Initialize semaphore items to 0

 Synchronization
 mutex_lock(m), mutex_unlock(m)

 Buffer management
 insertptr = (insertptr+1) % N

 removalptr = (removalptr+1) % N

Copyright ©: University of Illinois CS 241 Staff 40

Shared Resource

Readers-Writers Problem

Shared Resource

Readers-Writers Problem

Shared Resource

Readers-Writers Problem

II. Reader-Writer Problem

 Readers read data

 Writers write data

 Rules
 Multiple readers may read the data simultaneously

 Only one writer can write the data at any time

 A reader and a writer cannot access data simultaneously

 Locking table
 Whether any two can be in the critical section

simultaneously

Copyright ©: University of Illinois CS 241 Staff 48

Reader Writer

Reader OK No

Writer No No

reader() {

 while(TRUE) {

 <other stuff>;

 sem_wait(mutex);

 readCount++;

 if(readCount == 1)

 sem_wait(writeBlock);

 sem_signal(mutex);

 /* Critical section */

 access(resource);

 sem_wait(mutex);

 readCount--;

 if(readCount == 0)

 sem_signal(writeBlock);

 sem_post(mutex);

 }

}

writer() {

 while(TRUE) {

 <other computing>;

 sem_wait(writeBlock);

 /* Critical section */

 access(resource);

 sem_signal(writeBlock);

 }

}

Reader-Writer: First Solution
int readCount = 0;

semaphore mutex = 1;

semaphore writeBlock = 1;

reader() {

 while(TRUE) {

 <other computing>;

 sem_wait(readBlock);

 sem_wait(mutex1);

 readCount++;

 if(readCount == 1)

 sem_wait(writeBlock);

 sem_signal(mutex1);

 sem_signal(readBlock);

 access(resource);

 sem_wait(mutex1);

 readCount--;

 if(readCount == 0)

 sem_signal(writeBlock);

 sem_signal(mutex1);

 }

}

writer() {

 while(TRUE) {

 <other computing>;

 sem_wait(mutex2);

 writeCount++;

 if(writeCount == 1)

 sem_wait(readBlock);

 sem_signal(mutex2);

 sem_wait(writeBlock);

 access(resource);

 sem_signal(writeBlock);

 sem_wait(mutex2);

 writeCount--;

 if(writeCount == 0)

 sem_signal(readBlock);

 sem_signal(mutex2);

 }

}

Reader-Writer: Second

Solution
int readCount=0, writeCount=0;

semaphore mutex1=1, mutex2=1;

Semaphore readBlock=1,writeBlock=1

Better R-W solution idea

 Idea: serve requests in order

 Once a writer requests access, any

entering readers have to block until the

writer is done

 Advantage?

 Disadvantage?

55 Copyright ©: University of Illinois CS 241 Staff

reader() {

 while(TRUE) {

 <other computing>;

 sem_wait(writePending);

 sem_wait(readBlock);

 sem_wait(mutex1);

 readCount++;

 if(readCount == 1)

 sem_wait(writeBlock);

 sem_signal(mutex1);

 sem_signal(readBlock);

 sem_signal(writePending);

 access(resource);

 sem_wait(mutex1);

 readCount--;

 if(readCount == 0)

 sem_signal(writeBlock);

 sem_signal(mutex1);

 }

}

writer() {

 while(TRUE) {

 <other computing>;

 sem_wait(writePending);

 sem_wait(mutex2);

 writeCount++;

 if(writeCount == 1)

 sem_wait(readBlock);

 sem_signal(mutex2);

 sem_wait(writeBlock);

 access(resource);

 sem_signal(writeBlock);

 sem_signal(writePending);

 sem_wait(mutex2);

 writeCount--;

 if(writeCount == 0)

 sem_signal(readBlock);

 sem_signal(mutex2);

 }

}

Reader-Writer: Fairer

Solution?
int readCount = 0, writeCount = 0;

semaphore mutex1 = 1, mutex2 = 1;

semaphore readBlock = 1, writeBlock = 1, writePending = 1;

Summary

 Classic synchronization problems

 Producer-Consumer Problem

 Reader-Writer Problem

 Saved for next time:

 Sleeping Barber’s Problem

 Dining Philosophers Problem

61 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers

 N philosophers and N forks

 Philosophers eat/think

 Eating needs 2 forks

 Pick one fork at a time

2

62 Copyright ©: University of Illinois CS 241 Staff

