Condition Variables Revisited

Copyright ©: University of lllinois CS 241 Staff

[Condition Variable

Without condition variables,

o Threads continually poll to check if the
condition is met

o Busy waliting!
With condition variables
o Same goal without polling

Copyright ©: University of lllinois CS 241 Staff

Inside a condition variable

struct pthread cond ({ Number of threads
int waiting; waiting on the
handle t semaphore; condition variable

A semaphore for
synchronization

Copyright ©: University of lllinois CS 241 Staff

Inside a condition variable

pthread mutex lock is always called before
pthread cond wait to acquire lock

int pthread cond wait(pthread cond t *cond, pthread mutex¥V
*mutex) {

) atomic_increment (&cond->waiting) ;
pthread mutex unlock (mutex) ;
if (wait(cond->semaphore, INFINITE) < 0)

return errno;

Have lock

7

atomic_decrement (&cond->waiting) ;

pthread mutex lock (mutex) ;

return 0; int pthread cond signal (pthread cond t

} *cond) ({
if (cond->waiting)
mmm) semrel (cond->semaphore, 1);

return 0;

Thread always has lock
when returning from
pthread cond wait

Have lock

}

Copyright ©: University of lllinois CS 241 Staff 4

More Complex Example

Master thread

o Spawns a number of concurrent slaves

o Waits until all of the slaves have finished to exit
o Tracks current number of slaves executing

A mutex Is associlated with count and a
condition variable with the mutex

Copyright ©: University of lllinois CS 241 Staff

Example

#include <stdio.h>
#include <pthread.h>

#define NO OF PROCS 4

typedef struct _SharedType {

int count;

pthread mutex t lock;

pthread cond t done;

/* number of active slaves */
/* mutex for count */

/* sig. by finished slave */

} SharedType, *SharedType ptr;

SharedType ptr shared data;

Copyright ©: University of lllinois CS 241 Staff

Example: Main

main (int argc, char **argv) ({

int res;

/* allocate shared data */

if ((sh_data = (SharedType *)
malloc (sizeof (SharedType)))
NULL) {

exit(1l);

}

sh data->count = 0;

/* allocate condition wvar */

if ((res =
pthread cond init(&sh data-
>done, NULL)) !'= 0) {

exit (1),

/* allocate mutex */

if ((res =
pthread mutex init(&sh data-
>lock, NULL)) !'= 0) {

exit(1l);

/* generate number of slaves
to create */

srandom (0) ;
/* create up to 15 slaves */

master ((int) random()%1l6) ;

Copyright ©: University of lllinois CS 241 Staff

Example: Main

main (int argc, char **argv) ({

int res;

/* allocate shared data */

if ((sh_data = (SharedType *)
malloc (sizeof (SharedType))) ==
NULL) {

exit(1l);
}
sh data->count = 0;

pthread cont t data cond =
PTHREAD COND_ INITIALIZER;

pthread mutex t data mutex =
PTHREAD MUTEX INITIALIZER;

/* generate number of slaves
to create */

srandom (0) ;
/* create up to 15 slaves */

master ((int) random()%1l6) ;

Copyright ©: University of lllinois CS 241 Staff

Example: Master

master (int nslaves) { pthread mutex lock(&sh data-
int i; >lock) ;
pthread t id;
for (i = 1; i <= nslaves; i += while (sh _data->count !'= 0)
1) { pthread cond wait(&sh data-
pthread mutex lock (&sh data- >done, &sh_data->lock) ;
>lock) ;
/* start slave and detach */ pthread mutex unlock (&sh data-
shared data->count += 1; >lock) ;
pthread create(&id, NULL,
(void* (*) (void *))slave, printf ("All %d slaves have
(void *)sh data) ; finished.\n", nslaves);
pthread mutex unlock (&sh data- pthread_exit(0);
>lock) ; }
}

Copyright ©: University of lllinois CS 241 Staff

Example: Slave

void slave (void *shared) { /* done running */
int i1, n; printf ("Slave finished %d
sh _data = shared; cycles.\n", n);
printf (“Slave.\n", n);
n = random() % 1000; /* signal that you are done

working */
pthread cond signal (&sh data-

for (1 = 0; i < n; i+= 1)
>done) ;

Sleep (10) ;

/* release mutex for shared
/* mutex for shared data */

data */
pthread mutex lock(&sh data- pthread mutex unlock (&sh data-
>lock) ; >lock) ;

/* dec number of slaves */
sh data->count -= 1;

Copyright ©: University of lllinois CS 241 Staff 10]

Semaphores vs. CVs

Semaphore Condition Variables
Integer value (>=0) No integer value
Wait does not always Wait always blocks
block
Signal either releases Signal either releases
thread or inc’s counter thread or is lost
If signal releases If sighal releases
thread, both threads thread, only one of

continue afterwards them continue

Copyright ©: University of lllinois CS 241 Staff

Classical Synchronization
Problems

~_

[ese |

iy
T

Copyright ©: University of lllinois CS 241 Staff

[This lecture

Goals

o Introduce classical synchronization
oroblems

Topics

o Producer-Consumer Problem
o Reader-Writer Problem

o Dining Philosophers Problem
o Sleeping Barber’'s Problem

Copyright ©: University of lllinois CS 241 Staff

|

= Chefs cook items and put
them on a conveyer belt

= Waiters pick items
off the belt

Copyright ©: University of lllinois CS 241 Sta

= Now imagine
many chefs!

= And many
waiters!

[Producer-Consumer Problem

C.lb Chef = Producer
U Waiter = Consumer

//’ \ — N\
5 / 3 \
) > | \
'. —_ \ ——
\ | -
\
A\)
| /
\ — e ’
.- =

Producers insert items
Consumers remove items

Shared resource: bounded buffer

o Efficient implementation: circular buffer
with an insert and a removal pointer

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

P Chef = Producer

Waiter = Consumer

O

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

Culh Chef = Producer
Waiter = Consumer
i

InsertPtr
removePtr
What does the Where does the
chef do with a waiter take a
new pizza? pizza from?

o

Copyright ©: University of lllinois CS 241 Staff 19]

Producer-Consumer

'« Chef = Producer
Waliter = Consumer

removePtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

Cull Chef = Producer
Waiter = Cconsumer
A InsertPtr

e

removePtr

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

a Chef = Producer
Waiter = Consumer
_—" InsertPtr

removePtr

Insert pizza

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

a Chef = Producer
Waiter = Consumer
_—" InsertPtr

removePtr

Remove pizza

removePtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

C il Chef = Producer
Waiter = Consumer

removePtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer]

a Chef = Producer
Waiter = Consumer

InsertPtr

removePtr

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

Chef = Producer
Waiter = Consumer

L/

BUFFER FULL:
Producer must be
blocked!

InsertPtr

removePtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

C il Chef = Producer
Waiter = Consumer

: Remove pizza
removeptr NSENPU P

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

- Chef = Producer
Waliter = Consumer

removePtr

insertPtr Remo plzza

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer
N_/ Chef = Producer

Waiter = Consumer

InsertPtr

Remove pizza

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

a Chef = Producer
Waliter = Consumer
& removePtr

¥

InsertPtr

Remove pizza

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

a Chef = Producer
Waliter = Consumer
\ 2 removePtr

Remove pizza

InsertPtr

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

- Chef = Producer
Waliter = Consumer

insertPtr Remo plzza

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

'« Chef = Producer
Waliter = Cconsumer

Remove pizza

InsertPtr

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

- Chet = Producer
6 Waiter = Consumer
™
BUFFER EMPTY:
Consumer must be
blocked!
removePtr |
insertPtr Ree|zza

v .
y A\

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer Summary

= Producer -
o Insert items -
o Update insertion pointer ey
= Consumer
o Execute destructive read on the buffer KT\/Q
o Update removal pointer L
= Both
o Update information about how full/empty the buffer is
= Solution
o Must allow multiple producers and consumers

200000
G

|
SN SN S S S

Copyright ©: University of lllinois CS 241 Staff 35]

[Challenges

Prevent buffer overflow
Prevent buffer underflow

Mutual exclusion when modifying the
buffer data structure

Copyright ©: University of lllinois CS 241 Staff

[Solutions

Prevent buffer overflow

o Block producer when full

o Counting semaphore to count #free slots
o 0 =>» block producer

Prevent buffer underflow

Mutual exclusion when modifying the
buffer data structure

Copyright ©: University of lllinois CS 241 Staff

Solutions

Prevent buffer overflow

o Block producer when full

o Counting semaphore to count #free slots

o 0 =>» block producer

Prevent buffer underflow

o Block consumer when empty

o Counting semaphore to count #items in buffer
o 0 =» block consumer

Mutual exclusion when modifying the buffer
data structure

Copyright ©: University of lllinois CS 241 Staff

Solutions

= Prevent buffer overflow
o Block producer when full
Counting semaphore|to count #free slots
o 0 =>» block producer
= Prevent buffer underflow
o _Block consumer when empty
Counting semaphore_|to count #items in buffer
o 0 =» block consumer

= Mutual exclusion when modifying the buffer
data structure

O

O

O

Mutex

protects shared buffer & pointers

Copyright ©: University of lllinois CS 241 Staff

Assembling the solution

Producer

O sem wait(slots), sem signal (slots)
o Initialize slots tON

Consumer

O sem wait(items), sem signal (items)
o Initialize semaphore items to 0
Synchronization

0 mutex lock(m), mutex unlock (m)
Buffer management

O insertptr = (insertptr+l) $ N

O removalptr = (removalptr+l) % N

Copyright ©: University of lllinois CS 241 Staff

[Readers-Writers Problem

Shared Resource

[Readers-Writers Problem

[Readers-Writers Problem

Shared Resource

ll. Reader-Writer Problem

Readers read data

Writers write data

Rules

o Multiple readers may read the data simultaneously

o Only one writer can write the data at any time

o Areader and a writer cannot access data simultaneously
Locking table

o Whether any two can be in the critical section
simultaneously

Reader| Writer
Reader OK NoO
Writer NoO NoO

Copyright ©: University of lllinois CS 241 Staff

Reader-Writer: First Solution

reader () {
while (TRUE) ({

<other stuff>;
sem wait (mutex) ;
readCount++;

if (readCount == 1)
sem wait (writeBlock);
sem signal (mutex) ;

/* Critical section */
access (resource) ;

sem wait (mutex) ;
readCount--;
if (readCount == 0)

sem signal (writeBlock) ;
sem post (mutex) ;

int readCount = 0;
semaphore mutex = 1;
semaphore writeBlock = 1;

writer () {
while (TRUE) {
<other computing>;
sem wait (writeBlock);
/* Critical section */
access (resource) ;
sem signal (writeBlock) ;

Reader-Writer: Second
Solution

int readCount=0, writeCount=0;

reader () { semaphore mutexl=1, mutex2=1;
while (TRUE) { Semaphore readBlock=1l,writeBlock=1

<other computing>; writer () {
sem wait (readBlock); while (TRUE) ({
sem_wait (mutexl) ; <other computing>;
readCount++; sem wait (mutex2) ;
if (readCount == 1) writeCount++;

sem wait (writeBlock); if (writeCount == 1)
sem_signal (mutex1) ; sem wait (readBlock) ;
sem_signal (readBlock) ; sem;szgnal(muteXZ);

sem wait (writeBlock) ;

access (resource) ; access (resource) ;
sem_wait (mutexl) ; sem signal (writeBlock) ;
readCount--; sem wait (mutex2) ;
if (readCount == 0) writeCount--;

sem signal (writeBlock) if (writeCount == 0)
sem_signal (mutexl); sem signal (readBlock) ;

} sem signal (mutex2) ;

[Better R-W solution idea

ldea: serve requests in order

o Once a writer reguests access, any
entering readers have to block until the
writer is done

Advantage?
Disadvantage?

Copyright ©: University of lllinois CS 241 Staff

Reader-Writer: Fairer

int readCount = 0, writeCount = 0;

. 7 semaphore mutexl = 1, mutex2 = 1;
O utIOn semaphore readBlock = 1, writeBlock = 1, writePending = 1;
|

reader () { writer () {
while (TRUE) { while (TRUE) ({
<other computing>; <other computing>;
sem wait (writePending) ; sem wait (writePending) ;
sem wait (readBlock); sem wait (mutex2);
sem wait (mutexl); writeCount++;
readCount++; if (writeCount == 1)
if (readCount == 1) sem wait (readBlock);
sem wait (writeBlock); sem signal (mutex2) ;
sem signal (mutexl) ; sem wait (writeBlock);
sem signal (readBlock) ; access (resource) ;
sem signal (writePending) ; sem signal (writeBlock) ;
access (resource) ; sem signal (writePending) ;
sem wait (mutexl); sem wait (mutex2);
readCount--; writeCount--;
if (readCount == 0) if (writeCount == 0)
sem signal (writeBlock) ; sem signal (readBlock) ;

sem signal (mutexl); sem signal (mutex2) ;

[Summary

Classic synchronization problems
o Producer-Consumer Problem
o Reader-Writer Problem

Saved for next time:
o Sleeping Barber’'s Problem
o Dining Philosophers Problem

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers

N philosophers and N forks
o Philosophers eat/think

o Eating needs 2 forks

o Pick one fork at a time

!
=

Yty

O) \) .
@egca%%égfﬁﬁécmﬁ%@j@re A fa e

Copyright ©: University of lllinois CS 241 Staff

