
Condition Variables Revisited 

Copyright ©:  University of Illinois CS 241 Staff 1 



Condition Variable 

 Without condition variables,  

 Threads continually poll to check if the 

condition is met 

 Busy waiting! 

 With condition variables 

 Same goal without polling 

Copyright ©:  University of Illinois CS 241 Staff 2 



Inside a condition variable 

struct pthread_cond {  

 int waiting;  

 handle_t semaphore;  

}; 

Copyright ©:  University of Illinois CS 241 Staff 3 

Number of threads 

waiting on the 

condition variable 

A semaphore for 

synchronization 



Inside a condition variable 

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t 

*mutex) {  

 atomic_increment(&cond->waiting);  

 pthread_mutex_unlock(mutex);  

 if (wait(cond->semaphore, INFINITE) < 0)  

  return errno;  

 atomic_decrement(&cond->waiting);  

 pthread_mutex_lock(mutex);  

 return 0;  

} 

 

Copyright ©:  University of Illinois CS 241 Staff 4 

pthread_mutex_lock is always called before 

pthread_cond_wait to acquire lock 

H
a
v
e
 l
o
c
k
 

int pthread_cond_signal(pthread_cond_t 

*cond) {  

 if (cond->waiting)  

  semrel(cond->semaphore, 1);  

 return 0;  

} 

H
a
v
e
 l
o
c
k
 

Thread always has lock 

when returning from 
pthread_cond_wait  



More Complex Example 

 Master thread  

 Spawns a number of concurrent slaves 

 Waits until all of the slaves have finished to exit 

 Tracks current number of slaves executing 

 A mutex is associated with count and a 

condition variable with the mutex 

Copyright ©:  University of Illinois CS 241 Staff 5 



Example 

#include <stdio.h> 

#include <pthread.h> 

 

#define NO_OF_PROCS  4 

 

typedef struct _SharedType { 

  int count;      /* number of active slaves */ 

  pthread_mutex_t lock;   /* mutex for count */ 

  pthread_cond_t done;    /* sig. by finished slave */ 

} SharedType, *SharedType_ptr; 

 

SharedType_ptr shared_data; 

 

 

Copyright ©:  University of Illinois CS 241 Staff 6 



Example: Main 

main(int argc, char **argv) { 

  int res;  

  /* allocate shared data */ 

  if ((sh_data = (SharedType *) 

malloc(sizeof(SharedType))) == 

NULL) { 

      exit(1); 

  } 

  sh_data->count = 0; 

   

  /* allocate mutex */ 

  if ((res = 

pthread_mutex_init(&sh_data-

>lock, NULL)) != 0) { 

    exit(1); 

  } 

   

/* allocate condition var */ 

  if ((res = 

pthread_cond_init(&sh_data-

>done, NULL)) != 0) { 

    exit(1); 

  } 

   

  /* generate number of slaves 

to create */ 

  srandom(0);  

  /* create up to 15 slaves */ 

  master((int) random()%16);  

} 

Copyright ©:  University of Illinois CS 241 Staff 7 



Example: Main 

main(int argc, char **argv) { 

  int res;  

  /* allocate shared data */ 

  if ((sh_data = (SharedType *) 

malloc(sizeof(SharedType))) == 

NULL) { 

      exit(1); 

  } 

  sh_data->count = 0; 

   

  /* allocate mutex */ 

  if ((res = 

pthread_mutex_init(&sh_data-

>lock, NULL)) != 0) { 

    exit(1); 

  } 

   

/* allocate condition var */ 

  if ((res = 

pthread_cond_init(&sh_data-

>done, NULL)) != 0) { 

    exit(1); 

  } 

   

  /* generate number of slaves 

to create */ 

  srandom(0);  

  /* create up to 15 slaves */ 

  master((int) random()%16);  

} 

Copyright ©:  University of Illinois CS 241 Staff 8 

 

 

 

pthread_mutex_t data_mutex = 

PTHREAD_MUTEX_INITIALIZER; 

 

 

 

pthread_cont_t data_cond = 

PTHREAD_COND_INITIALIZER; 



Example: Master 

master(int nslaves) { 

  int i; 

  pthread_t id; 

  for (i = 1; i <= nslaves; i += 

1) { 

    pthread_mutex_lock(&sh_data-

>lock); 

    /* start slave and detach */ 

    shared_data->count += 1; 

    pthread_create(&id, NULL,  

      (void* (*)(void *))slave,  

      (void *)sh_data); 

    pthread_mutex_unlock(&sh_data-

>lock); 

  } 

   

  pthread_mutex_lock(&sh_data-

>lock); 

   

  while (sh_data->count != 0)  

    pthread_cond_wait(&sh_data-

>done, &sh_data->lock); 

 

  pthread_mutex_unlock(&sh_data-

>lock); 

   

  printf("All %d slaves have 

finished.\n", nslaves); 

  pthread_exit(0); 

} 

Copyright ©:  University of Illinois CS 241 Staff 9 



Example: Slave 

void slave(void *shared) { 

  int i, n; 

  sh_data = shared; 

  printf(“Slave.\n", n); 

  n = random() % 1000; 

   

  for (i = 0; i < n; i+= 1)  

    Sleep(10); 

   

  /* mutex for shared data */ 

  pthread_mutex_lock(&sh_data-

>lock); 

   

  /* dec number of slaves */ 

  sh_data->count -= 1; 

   

 /* done running */ 

  printf("Slave finished %d 

cycles.\n", n); 

   

  /* signal that you are done 

working */ 

  pthread_cond_signal(&sh_data-

>done); 

   

  /* release mutex for shared 

data */ 

  pthread_mutex_unlock(&sh_data-

>lock); 

} 

Copyright ©:  University of Illinois CS 241 Staff 10 



Semaphores vs. CVs 

Semaphore 

 Integer value (>=0) 

 Wait does not always 
block 

 Signal either releases 
thread or inc’s counter 

 If signal releases 
thread, both threads 
continue afterwards 

 

Condition Variables 

 No integer value 

 Wait always blocks 
 

 Signal either releases 
thread or is lost 

 If signal releases 
thread, only one of 
them continue 

Copyright ©:  University of Illinois CS 241 Staff 11 



Classical Synchronization 

Problems 

12 Copyright ©:  University of Illinois CS 241 Staff 



This lecture 

 Goals 

 Introduce classical synchronization 
problems 

 Topics 

 Producer-Consumer Problem 

 Reader-Writer Problem 

 Dining Philosophers Problem 

 Sleeping Barber’s Problem 

13 Copyright ©:  University of Illinois CS 241 Staff 



 Chefs cook items and put 

them on a conveyer belt 

14 Copyright ©:  University of Illinois CS 241 Staff 

 Waiters pick items 
off the belt 



 Now imagine 

many chefs! 

15 Copyright ©:  University of Illinois CS 241 Staff 

 And many 
waiters! 



 A potential mess! 

16 Copyright ©:  University of Illinois CS 241 Staff 



Producer-Consumer Problem 

 Producers insert items  

 Consumers remove items 

 Shared resource: bounded buffer 

 Efficient implementation: circular buffer 

with an insert and a removal pointer 

Chef   = Producer 

Waiter  = Consumer 

17 Copyright ©:  University of Illinois CS 241 Staff 



Producer-Consumer 

18 Copyright ©:  University of Illinois CS 241 Staff 

Chef   = Producer 

Waiter  = Consumer 



Producer-Consumer 

insertPtr 

removePtr 

19 Copyright ©:  University of Illinois CS 241 Staff 

Chef   = Producer 

Waiter  = Consumer 

What does the 

chef do with a 

new pizza? 

Where does the 

waiter take a 

pizza from? 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

20 Copyright ©:  University of Illinois CS 241 Staff 

Insert pizza 

insertPtr 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

21 Copyright ©:  University of Illinois CS 241 Staff 

Insert pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

22 Copyright ©:  University of Illinois CS 241 Staff 

Insert pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

23 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 

removePtr 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

24 Copyright ©:  University of Illinois CS 241 Staff 

Insert pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

25 Copyright ©:  University of Illinois CS 241 Staff 

Insert pizza 



Producer-Consumer 

insertPtr 

removePtr 

BUFFER FULL: 

Producer must be 

blocked! 

Chef   = Producer 

Waiter  = Consumer 

26 Copyright ©:  University of Illinois CS 241 Staff 

Insert pizza 



Producer-Consumer 

insertPtr 
removePtr 

Chef   = Producer 

Waiter  = Consumer 

27 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

28 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

29 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

30 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

31 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

32 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

33 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

BUFFER EMPTY: 

Consumer must be 

blocked! 

Chef   = Producer 

Waiter  = Consumer 

34 Copyright ©:  University of Illinois CS 241 Staff 

Remove pizza 



Producer-Consumer Summary 

 Producer  
 Insert items 

 Update insertion pointer 

 Consumer  
 Execute destructive read on the buffer 

 Update removal pointer 

 Both  
 Update information about how full/empty the buffer is 

 Solution  
 Must allow multiple producers and consumers 

Copyright ©:  University of Illinois CS 241 Staff 35 



Challenges 

 Prevent buffer overflow 

 Prevent buffer underflow 

 Mutual exclusion when modifying the 

buffer data structure 

36 Copyright ©:  University of Illinois CS 241 Staff 



Solutions 

 Prevent buffer overflow 

 Block producer when full 

 Counting semaphore to count #free slots  

 0  block producer 

 Prevent buffer underflow 

 Mutual exclusion when modifying the 

buffer data structure 

37 Copyright ©:  University of Illinois CS 241 Staff 



Solutions 

 Prevent buffer overflow 
 Block producer when full 

 Counting semaphore to count #free slots  

 0  block producer 

 Prevent buffer underflow 
 Block consumer when empty 

 Counting semaphore to count #items in buffer  

 0  block consumer 

 Mutual exclusion when modifying the buffer 
data structure 

38 Copyright ©:  University of Illinois CS 241 Staff 



Solutions 

 Prevent buffer overflow 
 Block producer when full 

 Counting semaphore to count #free slots  

 0  block producer 

 Prevent buffer underflow 
 Block consumer when empty 

 Counting semaphore to count #items in buffer  

 0  block consumer 

 Mutual exclusion when modifying the buffer 
data structure 
 Mutex protects shared buffer & pointers 

39 Copyright ©:  University of Illinois CS 241 Staff 



Assembling the solution 

 Producer 
 sem_wait(slots),  sem_signal(slots) 

 Initialize slots to N 

 Consumer 
 sem_wait(items),  sem_signal(items) 

 Initialize semaphore items to 0 

 Synchronization 
 mutex_lock(m),  mutex_unlock(m) 

 Buffer management 
 insertptr = (insertptr+1) % N 

 removalptr = (removalptr+1) % N 

Copyright ©:  University of Illinois CS 241 Staff 40 



Shared Resource 

Readers-Writers Problem 



Shared Resource 

Readers-Writers Problem 



Shared Resource 

Readers-Writers Problem 



II. Reader-Writer Problem 

 Readers read data 

 Writers write data 

 Rules 
 Multiple readers may read the data simultaneously 

 Only one writer can write the data at any time 

 A reader and a writer cannot access data simultaneously 

 Locking table 
 Whether any two can be in the critical section 

simultaneously 

Copyright ©:  University of Illinois CS 241 Staff 48 

Reader Writer 

Reader  OK No 

Writer No No 



reader() { 

  while(TRUE) { 

    <other stuff>; 

    sem_wait(mutex); 

    readCount++; 

 

    if(readCount == 1) 

      sem_wait(writeBlock); 

    sem_signal(mutex); 

 

    /* Critical section */ 

       access(resource); 

 

    sem_wait(mutex); 

    readCount--; 

    if(readCount == 0) 

      sem_signal(writeBlock); 

    sem_post(mutex); 

  } 

} 

writer() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(writeBlock); 

    /* Critical section */ 

    access(resource); 

    sem_signal(writeBlock); 

  } 

} 

Reader-Writer: First Solution 
int readCount = 0; 

semaphore mutex = 1; 

semaphore writeBlock = 1; 



reader() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(readBlock);      

    sem_wait(mutex1);  

    readCount++; 

    if(readCount == 1) 

      sem_wait(writeBlock); 

    sem_signal(mutex1);  

    sem_signal(readBlock);      

 

    access(resource); 

    sem_wait(mutex1);  

    readCount--; 

    if(readCount == 0) 

      sem_signal(writeBlock);     

    sem_signal(mutex1);  

  } 

} 

writer() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(mutex2); 

    writeCount++; 

    if(writeCount == 1) 

      sem_wait(readBlock); 

    sem_signal(mutex2); 

    sem_wait(writeBlock); 

    access(resource); 

    sem_signal(writeBlock); 

    sem_wait(mutex2); 

    writeCount--; 

    if(writeCount == 0) 

      sem_signal(readBlock);     

    sem_signal(mutex2); 

  } 

} 

Reader-Writer: Second 

Solution 
int readCount=0, writeCount=0; 

semaphore mutex1=1, mutex2=1; 

Semaphore readBlock=1,writeBlock=1  



Better R-W solution idea 

 Idea: serve requests in order 

 Once a writer requests access, any 

entering readers have to block until the 

writer is done 

 Advantage? 

 Disadvantage? 

55 Copyright ©:  University of Illinois CS 241 Staff 



reader() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(writePending); 

    sem_wait(readBlock); 

    sem_wait(mutex1); 

    readCount++; 

    if(readCount == 1) 

      sem_wait(writeBlock); 

    sem_signal(mutex1); 

    sem_signal(readBlock); 

    sem_signal(writePending); 

    access(resource); 

    sem_wait(mutex1); 

    readCount--; 

    if(readCount == 0) 

      sem_signal(writeBlock); 

    sem_signal(mutex1); 

  } 

} 

writer() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(writePending); 

    sem_wait(mutex2); 

    writeCount++; 

    if(writeCount == 1) 

      sem_wait(readBlock); 

    sem_signal(mutex2); 

    sem_wait(writeBlock); 

    access(resource); 

    sem_signal(writeBlock); 

    sem_signal(writePending); 

    sem_wait(mutex2); 

    writeCount--; 

    if(writeCount == 0) 

      sem_signal(readBlock); 

    sem_signal(mutex2); 

  } 

} 

Reader-Writer: Fairer 

Solution? 
int readCount = 0, writeCount = 0; 

semaphore mutex1 = 1, mutex2 = 1; 

semaphore readBlock = 1, writeBlock = 1, writePending = 1; 



Summary 

 Classic synchronization problems 

 Producer-Consumer Problem 

 Reader-Writer Problem 

 Saved for next time: 

 Sleeping Barber’s Problem 

 Dining Philosophers Problem 

61 Copyright ©:  University of Illinois CS 241 Staff 



Dining Philosophers 

 N philosophers and N forks 

 Philosophers eat/think 

 Eating needs 2 forks 

 Pick one fork at a time  

 

 

 
2 

62 Copyright ©:  University of Illinois CS 241 Staff 


