
Synchronization

Copyright ©: University of Illinois CS 241 Staff 1

Introducing: Critical Region

(Critical Section)

Process {

while (true) {

ENTER CRITICAL REGION

Access shared variables;

LEAVE CRITICAL REGION

Do other work

}

}
2Copyright ©: University of Illinois CS 241 Staff

Critical Region Requirements

 Mutual Exclusion

 Safety

 Progress

 No deadlock

 Bounded Wait

 No starvation

Copyright ©: University of Illinois CS 241 Staff 3

Critical Regions

Copyright ©: University of Illinois CS 241 Staff 4

Mutual exclusion using critical regions

Process A

Process B

A enters critical region A leaves critical region

B attempts to

enter critical

region

B enters

critical

region

B leaves

critical

region

T1 T2 T3 T4

B is blocked
What mechanisms

do we need to be

able to achieve

mutual exclusion?
A way to block B

A way to let B know that it

can proceed

Mutual Exclusion Solutions

 Software-only candidate solutions (Two-Process

Solutions)

 Lock Variables

 Turn Mutual Exclusion

 Other Flag Mutual Exclusion

 Two Flag Mutual Exclusion

 Two Flag and Turn Mutual Exclusion

 Hardware solutions

 Disabling Interrupts; Test-and-set; Swap (Exchange)

 Semaphores

Copyright ©: University of Illinois CS 241 Staff 5

Lock Variables

...

while (lock) {

/* spin spin spin spin */

}

lock = 1;

/* EnterCriticalSection; */

access shared variable;

/* LeaveCriticalSection; */

lock = 0;

...

What's the problem?
6Copyright ©: University of Illinois CS 241 Staff

Turn-based Mutual Exclusion

with Strict Alternation

…
while (turn != my_process_id) {

/* wait your turn */

}

access shared variables;

turn = other_process_id;

…

What's the problem?
9Copyright ©: University of Illinois CS 241 Staff

Other Flag Mutual Exclusion

int owner[2] = {false, false};

…

while (owner[other_process_id]) {

/* wait your turn */

}

owner[my_process_id] = true;

access shared variables;

owner[my_process_id] = false;

…

What's the problem?
12Copyright ©: University of Illinois CS 241 Staff

Two Flag Mutual Exclusion

int owner[2] = {false, false};

…

owner[my_process_id] = true;

while (owner[other_process_id]) {

/* wait your turn */

}

access shared variables;

owner[my_process_id] = false;

…

What's the problem?
16Copyright ©: University of Illinois CS 241 Staff

Two Flag and Turn Mutual
Exclusion

int owner[2]={false, false};

int turn;

…

owner[my_process_id] = true;

turn = other_process_id;

while (owner[other_process_id] and

turn == other_process_id) {

/* wait your turn */

}

access shared variables;

owner[my_process_id] = false;

…

19Copyright ©: University of Illinois CS 241 Staff

Discussion

 In uni-processors

 Concurrent processes cannot be overlapped, only interleaved

 A process runs until it invokes a system call, or is interrupted

 To guarantee mutual exclusion, hardware support could help

by allowing the disabling of interrupts
While(true) {

/* disable interrupts */

/* critical section */

/* enable interrupts */

/* remainder */

}

 What‟s the problem with this solution?

21Copyright ©: University of Illinois CS 241 Staff

Discussion

 In multi-processors

 Several processors share memory

 Processors behave independently in a peer relationship

 Interrupt disabling will not work

 We need hardware support where access to a memory

location excludes any other access to that same location

 The hardware support is based on execution of multiple

instructions atomically (test and set)

22Copyright ©: University of Illinois CS 241 Staff

Test and Set Instruction

boolean Test_And_Set(boolean* lock)

atomic {

boolean initial;

initial = *lock;

*lock = true;

return initial;

}

Note: this is more accurate

than the textbook version

atomic = executed in a single shot

without any interruption

23Copyright ©: University of Illinois CS 241 Staff

Using Test_And_Set for

Mutual Exclusion

Pi {

while(1) {

while(Test_And_Set(lock)) {

/* spin */

}

/* Critical Section */

lock =0;

/* remainder */

}

}

void main () {

lock = 0;

parbegin(P1,…,Pn);

}

24

What's the problem?

Copyright ©: University of Illinois CS 241 Staff

Semaphores

 Fundamental Principle:

 Two or more processes want to

cooperate by means of simple signals

 Special Variable: semaphore s

 A special kind of “int” variable

 Can‟t just modify or set or increment or

decrement it

26Copyright ©: University of Illinois CS 241 Staff

Semaphores

 Before entering critical section

 semWait(s)

 Receive signal via semaphore s

 “down” on the semaphore

 Also: P – proberen

 After finishing critical section

 semSignal(s)

 Transmit signal via semaphore s

 “up” on the semaphore

 Also: V – verhogen

 Implementation requirements

 semSignal and semWait must be atomic
27Copyright ©: University of Illinois CS 241 Staff

Semaphores vs. Test_and_Set

Semaphore

semaphore s = 1;

Pi {

while(1) {

semWait(s);

/* Critical Section */

semSignal(s);

/* remainder */

}

}

Test_and_Set

lock = 0;

Pi {

while(1) {

while(Test_And_Set(lock));

/* Critical Section */

lock =0;

/* remainder */

}

}

28Copyright ©: University of Illinois CS 241 Staff

 Avoid busy waiting by suspending

 Block if s == False

 Wakeup on signal (s = True)

Inside a Semaphore

 Requirement

 No two processes can execute wait() and signal() on

the same semaphore at the same time!

 Critical section

 wait() and signal() code

 Now have busy waiting in critical section implementation

 Implementation code is short

 Little busy waiting if critical section rarely occupied

 Bad for applications may spend lots of time in critical sections

Copyright ©: University of Illinois CS 241 Staff 29

Inside a Semaphore

 Add a waiting queue

 Multiple process
waiting on s

 Wakeup one of the

blocked processes

upon getting a signal

 Semaphore data structure
typedef struct {

int count;

queueType queue;

/* queue for procs.

waiting on s */

} SEMAPHORE;

30Copyright ©: University of Illinois CS 241 Staff

Binary Semaphores

typedef struct bsemaphore {

enum {0,1} value;

queueType queue;

} BSEMAPHORE;

void semSignalB (bsemaphore s)

{

if (s.queue is empty())

s.value = 1;

else {

remove P from s.queue;

place P on ready list;

}

}

void semWaitB(bsemaphore s) {

if (s.value == 1)

s.value = 0;

else {

place P in s.queue;

block P;

}

}

31Copyright ©: University of Illinois CS 241 Staff

General Semaphore

typedef struct {

int count;

queueType queue;

} SEMAPHORE;

void semSignal(semaphore s) {

s.count++;

if (s.count ≤ 0) {

remove P from s.queue;

place P on ready list;

}

}

void semWait(semaphore s) {

s.count--;

if (s.count < 0) {

place P in s.queue;

block P;

}

}

32Copyright ©: University of Illinois CS 241 Staff

Making the operations atomic

 Isn‟t this exactly what semaphores were trying to

solve? Are we stuck?!

 Solution: resort to test-and-set

33

typedef struct {

boolean lock;

int count;

queueType queue;

} SEMAPHORE;

void semWait(semaphore s) {

while (test_and_set(lock)) { }

s.count--;

if (s.count < 0) {

place P in s.queue;

block P;

}

lock = 0;

}

Copyright ©: University of Illinois CS 241 Staff

Making the operations atomic

 Busy-waiting again!

 Then how are

semaphores better

than just using

test_and_set?

34

void semWait(semaphore s) {

while (test_and_set(lock)) { }

s.count--;

if (s.count < 0) {

place P in s.queue;

block P;

}

lock = 0;

}

 T&S: busy-wait during critical section

 Sem.: busy-wait just during semWait, semSignal:

very short operations!
Copyright ©: University of Illinois CS 241 Staff

Mutual Exclusion Using

Semaphores

semaphore s = 1;

Pi {

while(1) {

semWait(s);

/* Critical Section */

semSignal(s);

/* remainder */

}

}

35Copyright ©: University of Illinois CS 241 Staff

Value of

Semaphore
lock

Queue A

semWait(lock)

0

1

semWait(lock)

B

-1
semSignal(lock)

0

semSignal(lock)

1

Process Process Critical Region

Normal Execution

Blocked on

semaphore

lock

B

36Copyright ©: University of Illinois CS 241 Staff

Semaphore Example 1

semaphore s = 2;

Pi {

while(1) {

semWait(s);

/* CS */

semSignal(s);

/* remainder */

}

}

 What happens?

 When might this be

desirable?

37Copyright ©: University of Illinois CS 241 Staff

Semaphore Example 2

semaphore s = 0;

Pi {

while(1) {

semWait(s);

/* CS */

semSignal(s);

/* remainder */

}

}

 What happens?

 When might this be

desirable?

40Copyright ©: University of Illinois CS 241 Staff

Semaphore Example 3

semaphore s = 0;

P1 {

/* do some stuff */

semWait(s);

/* do some more stuff */

}

semaphore s; /* shared */

P2 {

/* do some stuff */

semSignal(s);

/* do some more stuff */

}

 What happens?

 When might this be desirable?

43Copyright ©: University of Illinois CS 241 Staff

Semaphore Example 4

Process 1 executes:

while(1) {

semWait(S);

a;

semSignal(Q);

}

Process 2 executes:

while(1) {

semWait(Q);

b;

semSignal(S);

}

 Two processes

 two semaphores: S and Q

 Protect two critical variables „a‟ and „b‟.

 What happens in the pseudocode if Semaphores S and

Q are initialized to 1 (or 0)?
46Copyright ©: University of Illinois CS 241 Staff

Summary

 Synchronization is important for correct

multi-threading programs

 Critical regions

 Solutions to protect critical regions

 Software-only approaches

 Other hardware solutions

 Semaphores

Copyright ©: University of Illinois CS 241 Staff 47

