
Copyright ©: University of Illinois CS 241 Staff 1

Introduction to Synchronization



Overview

 Introduction to synchronization

 Why do we need synchronization?

 Solution: Critical Regions

 How to implement a Critical Region 

inconveniently

2Copyright ©: University of Illinois CS 241 Staff



What’s yours is mine …

Copyright ©: University of Illinois CS 241 Staff 3

Shared state:

queue_t q; /* to do list */

Producer thread:

while (true) {

Create new work W;

Find tail of q;

tail = W;

}

Consumer thread:

while (true) {

work = head of q;

remove head from q;

do_work(work);

}



Can We Share?

Copyright ©: University of Illinois CS 241 Staff 4

Producer thread:

while (true) {

Create new work W;

Find tail of q;

tail = W;

}

Consumer thread:

while (true) {

work = head of q;

remove head from q;

do_work(work);

}

0

work Open 

bottle

next NULL

q.head



Can We Share?

Copyright ©: University of Illinois CS 241 Staff 5

Producer thread:

while (true) {

Create new work W;

Find tail of q;

tail = W;

}

Consumer thread:

while (true) {

work = head of q;

remove head from q;

do_work(work);

}

3

1
5

0

6

5

4

3

2

1

work Open 

bottle

next NULL

work Drink 

water

next NULL

q.head


2



work Open 

bottle

next NULL

work Open 

bottle

next NULL

Something went horribly 

wrong …

Copyright ©: University of Illinois CS 241 Staff 6

Producer thread:

while (true) {

Create new work W;

Find tail of q;

tail = W;

}

Consumer thread:

while (true) {

work = head of q;

remove head from q;

do_work(work);

}

6

1

4

0

6 5

4

3
2

1

work Drink 

water

next NULL

q.head




I’ll never get to drink my water!

NULL

2



A Simpler Example

 We just saw that processes / threads 

can be preempted at arbitrary times

 The previous example might work, or not

 What if we just use simple operations?

Copyright ©: University of Illinois CS 241 Staff 7

Thread 1:

x++;

Thread 2:

x++;

Shared state:

int x=0;

Are we safe now?



Incrementing Variables

 How is x++ implemented?

register1 = x

register1 = register1 + 1

x = register1

Copyright ©: University of Illinois CS 241 Staff 8



9 Copyright ©: University of Illinois CS 241 Staff

What could happen?

Thread 1: x++; Thread 2: x++; r1 r2 x

x++: r1 = x

r1 = r1 + 1

x = r1



Producer/Consumer Problem

 Producer process "produces" information 

 Consumer process "consumes" produced information

 Challenge: Bounded Buffer

 Buffer has max capacity N

 Producer can only add if buffer has room (i.e., count < N)

 Consumer can only remove if buffer has item (i.e., count > 0)

Copyright ©: University of Illinois CS 241 Staff 22

Producer ConsumerN = 4

2 empty slots 2 occupied slots



Producer/Consumer Problem

Copyright ©: University of Illinois CS 241 Staff 23

Producer ConsumerN = 4

2 empty slots 2 occupied slots

Producer thread:

while (true) {

Create new work W;

Find tail of q;

tail = W;

}

Consumer thread:

while (true) {

work = head of q;

remove head from q;

do_work(work);

}



Producer/Consumer Problem

Copyright ©: University of Illinois CS 241 Staff 24

Producers Consumers

N = 4

2 empty slots 2 occupied slots

Producer threads:

while (true) {

Create new work W;

Find tail of q;

tail = W;

}

Consumer threads:

while (true) {

work = head of q;

remove head from q;

do_work(work);

}
What happens with 
multiple producers 
and consumers?



Multiple Producers:
Shared Queue

4

5

6

7
…

…

in
my_next_free = in; my_next_free = in

Store NEW into 
my_next_free;

Store NEW into 
my_next_free;

in=my_next_free+1in=my_next_free+1

Shared memoryProcess 1 Process 2

int my_next_free;
int my_next_free;

25Copyright ©: University of Illinois CS 241 Staff



Multiple Producers:
Shared Queue: Correct

abc

def

ghi

4

5

6

7

mno
…

…
in

1

2

4

jkl3

5

6

Shared memoryProcess 1 Process 2

int my_next_free;
int my_next_free;

26Copyright ©: University of Illinois CS 241 Staff

my_next_free = in;

Store jkl into 
my_next_free;

in=my_next_free+1

my_next_free = in

Store mno into 
my_next_free;

in=my_next_free+1



jlkmno

Multiple Producers: 
Example: Problem

Shared memory

abc

def

ghi

4

5

6

7
…

…
in

Process 1 Process 2

int my_next_free;
int my_next_free;

1

3

2

4

5

6

27Copyright ©: University of Illinois CS 241 Staff

my_next_free = in;

Store jkl into 
my_next_free;

in=my_next_free+1

my_next_free = in

Store mno into 
my_next_free;

in=my_next_free+1



Introducing: Critical Region 

(Critical Section)

Process { 

while (true) { 

Access shared variables; 

Do other work 

} 

} 
28Copyright ©: University of Illinois CS 241 Staff



Introducing: Critical Region 

(Critical Section)

Process { 

while (true) { 

ENTER CRITICAL REGION

Access shared variables; 

LEAVE CRITICAL REGION

Do other work 

} 

} 
29Copyright ©: University of Illinois CS 241 Staff



30Copyright ©: University of Illinois CS 241 Staff



Critical Region Requirements

 Mutual Exclusion

 Progress

 Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 31



Mutual Exclusion

32Copyright ©: University of Illinois CS 241 Staff

Hmm, are there 

door locks?



Critical Region Requirements

 Mutual Exclusion

 At most one process in critical region

 No other process may execute within the 

critical region while a process is in it

 Safety

 Progress

 Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 33



Mutual Exclusion

34Copyright ©: University of Illinois CS 241 Staff

Hmm, are there 

door locks?

Progress

Did you
see anybody 

go in?



Critical Region Requirements

 Mutual Exclusion

 Progress

 If no process is waiting in its critical 

region and several processes are trying 

to get into their critical section, then one 

of the waiting processes should be able 

to enter the critical region

 Liveness – no deadlocks

 Bounded Wait
Copyright ©: University of Illinois CS 241 Staff 35



Mutual Exclusion

36Copyright ©: University of Illinois CS 241 Staff

Hmm, are there 

door locks?

Progress Bounded Wait

Did you
see anybody 

go in?

I can’t wait 
forever!



Critical Region Requirements

 Mutual Exclusion

 Progress

 Bounded Wait

 A process requesting entry to a critical 

section should only have to wait for a 

bounded number of other processes to 

enter and leave the critical region

 Liveness – no starvation

Copyright ©: University of Illinois CS 241 Staff 37



Critical Region Requirements

 Mutual Exclusion

 Progress

 Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 38

Must ensure these requirements without 

assumptions about number of CPUs, 

speeds of the threads, or scheduling!



Critical Regions

Mutual exclusion using critical regions

Process A

Process B

A enters critical region A leaves critical region

B attempts to 

enter critical 

region

B enters 

critical 

region

B leaves 

critical 

region

T1 T2 T3 T4

B is blocked

39Copyright ©: University of Illinois CS 241 Staff

What mechanisms 

do we need to be 

able to achieve 

mutual exclusion?



Critical Regions

Mutual exclusion using critical regions

Process A

Process B

A enters critical region A leaves critical region

B attempts to 

enter critical 

region

B enters 

critical 

region

B leaves 

critical 

region

T1 T2 T3 T4

B is blocked

40Copyright ©: University of Illinois CS 241 Staff

What mechanisms 

do we need to be 

able to achieve 

mutual exclusion?
A way to block B

A way to let B know that it 

can proceed



Summary

 Synchronization is important for correct 

multi-threading programs

 Race conditions

 Critical regions

 What’s next: protecting critical regions

 Software-only approaches

 Semaphores

 Other hardware solutions 

Copyright ©: University of Illinois CS 241 Staff 41


