
Processes

Copyright ©: University of Illinois CS 241 Staff 1

Processes

� What is a process?
� Birth

� How do I make one? � How do I make one?

� Life
� Wait for one?

� Death
� Kill one?

Copyright ©: University of Illinois CS 241 Staff 2

Program or Process?

� Process
� A process is the context (the information/data)

maintained for an executing program
� An executable instance of a program� An executable instance of a program

� A program can have many processes
� Each process has a unique identifier

� Unix processes
� Process #1 is known as the 'init' process (root

of the process hierarchy)

Copyright ©: University of Illinois CS 241 Staff 3

What makes up a process?

� Program code
� Machine registers
� Global data� Global data
� Stack
� Open files
� An environment

Copyright ©: University of Illinois CS 241 Staff 4

Process Context

� Process ID (pid) unique integer
� Parent process ID (ppid) unique integer

� Current directory
� File descriptor table
� Environment VAR=VALUEpairs

� Pointer to program code
� Pointer to data Mem for global vars
� Pointer to stack Mem for local vars
� Pointer to heap Dynamically

allocated memory
� Execution priority
� Signal information

Copyright ©: University of Illinois CS 241 Staff 5

Unix Processes

� Address space
� The address space is a section of memory that contains

the code to execute as well as the process stack

� Set of data structures in the kernel to keep track of � Set of data structures in the kernel to keep track of
that process
� Address space map
� Current status of the process
� Execution priority of the process
� Resource usage of the process
� Current signal mask
� Owner of the process

Copyright ©: University of Illinois CS 241 Staff 6

Process Lifetime

� Some processes run from system boot to
shutdown
� Servers & Daemons

(e.g. Apache httpd server)(e.g. Apache httpd server)

� Most processes come and go rapidly, as
tasks start and complete
� 'unit of work' on a modern computer

� A process can die a premature, even
horrible death (say, due to a crash)

Copyright ©: University of Illinois CS 241 Staff 7

Know your process

� Each process has a unique identifier

int myid = getpid()int myid = getpid()

Copyright ©: University of Illinois CS 241 Staff 8

What is wrong with
this?

Know your process

� better…
pid_t myid = getpid()

� pid_t: int in linux, � pid_t: int in linux,
� pid_t: long in other systems

� Know your parent
pid_t myparentid = getppid()

Copyright ©: University of Illinois CS 241 Staff 9

Process Creation

� On creation, process needs resources
� CPU, memory, files, I/O devices

� Get resources from the OS or from the
parent process
� Child process is restricted to a subset of parent

resources
� Prevents many processes from overloading

system

Copyright ©: University of Illinois CS 241 Staff 10

Process Creation

� Execution options
� Parent continues concurrently with child
� Parent waits until child has terminated

� Address space options
� Child process is duplicate of parent process
� Child process has a new program loaded into it

Copyright ©: University of Illinois CS 241 Staff 11

Creating a Process – fork()

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

� Create a child process
The child is an (almost) exact copy of the parent� The child is an (almost) exact copy of the parent

� The new process and the old process both continue in
parallel from the statement that follows the fork()

� Returns:
� To child

� 0 on success

� To parent
� process ID of the child process
� -1 on error, sets errno

Copyright ©: University of Illinois CS 241 Staff 12

Creating a Process – fork()

Parent

pid = fork() Child
In the child:
pid == 0 ;

In the

Program
Text

Copyright ©: University of Illinois CS 241 Staff 13

Shared
Program

TextData
Copy

of Data

pid == 0
In the
parent:
pid == the
process ID
of the child

A program can use this pid difference to do

different things in the parent and child

Example – fork()

int pid;
int status = 0;

if (pid = fork()) {
/* parent */

Parent uses wait to sleep until the
child exits.

fork returns twice:
Parent: pid == child process ID (pid)
Child: pid == 0

/* parent */
…..
pid = wait(&status);

} else {
/* child */
…..
exit(status);

}

Copyright ©: University of Illinois CS 241 Staff 14

Parent uses wait to sleep until the
child exits.
wait returns child pid and status.

Creating a Process – fork()

� The child process is an exact copy of the
parent process except
� The child process has a unique process ID

The child process has a different parent process � The child process has a different parent process
ID (i.e., the process ID of the calling process)

� The child process has its own copy of the
parent's file descriptors

� and some other stuff about memory and stuff
that we’ll learn later …

Copyright ©: University of Illinois CS 241 Staff 15

Example – fork()

Challenge:
write code so that child prints
'CHILD: my id is ___ and my parent id is ___'

and parent prints
'PARENT:my id is ___ and the child's id is ___'

Copyright ©: University of Illinois CS 241 Staff 16

Example – fork()

childpid = fork();

if ?? {

printf(“CHILD: my id is %d and my parent id is
%d.”, getpid(), getppid());

What order will the output be
printed in?

(childpid == 0)

%d.”, getpid(), getppid());

exit(0);

}

else {

printf(“PARENT:my id is %d and the child's id is
%d.”, childpid, getpid());

exit(0);

}

Copyright ©: University of Illinois CS 241 Staff 17

How does fork work?

� Parent
mypid = 4, myppid = 1

int forked_pid , wait_pid;

int status = 0;

� Child
mypid = 6, myppid = 4

int forked_pid, wait_pid;

int status = 0;

if (forked_pid = fork()) {

/* parent */

…..

wait_pid = wait(&status);

} else {

/* child */

…..

exit(status);

}

if (forked_pid = fork()) {

/* parent */

…..

wait_pid = wait(&status);

} else {

/* child */

…..

exit(status);

}

Copyright ©: University of Illinois CS 241 Staff

How does fork really work?

� Parent
mypid = 4, myppid = 1

int forked_pid , wait_pid;

int status = 0;

� Child
mypid = 6, myppid = 4

int forked_pid , wait_pid;

int status = 0;

if (forked_pid = fork()) {

/* parent */

…..

wait_pid = wait(&status);

} else {

/* child */

…..

exit(status);

}

Copyright ©: University of Illinois CS 241 Staff

Chain and Fan
Chain

� Write code to make
chain

Fan

� Code to make N children
of one parent process?

Copyright ©: University of Illinois CS 241 Staff 20

ChildChildParent

Parent

Child Child
… …

Chain and Fan
Chain

pid_t childpid = 0;

for (i=1;i<n;i++)

if (childpid = fork())

break;

Fan

break;

Copyright ©: University of Illinois CS 241 Staff 21

ChildChildParent

Parent

Child Child
… …

Chain and Fan
Chain

pid_t childpid = 0;

for (i=1;i<n;i++)

if (childpid = fork())

break;

Fan
pid_t childpid = 0;

for (i=1;i<n;i++)

if ((childpid = fork())

<=0)break; <=0)

break;

Copyright ©: University of Illinois CS 241 Staff 22

ChildChildParent

Parent

Child Child
… …

Chain and Fan
Chain

pid_t childpid = 0;

for (i=1;i<n;i++)

if (childpid = fork())

break;

Fan
pid_t childpid = 0;

for (i=1;i<n;i++)

if ((childpid = fork())

== - 1)break; == - 1)

break;

Copyright ©: University of Illinois CS 241 Staff 23

ChildChildParent

Parent

Child Child
… …

What
happens

here?

Chain and Fan Example (n=4)

pid_t childpid = 0;

for (i=1;i<n;i++)

if ((childpid =
fork()) == -1)

Parent

n = 4

Child

i = 1

Child

i = 2

Child

i = 3

Child

i = 4

Copyright ©: University of Illinois CS 241 Staff 24

break;

Child

i = 2

Child

i = 3

Child

i = 3

Child

i = 4

Child

i = 3

Child

i = 4

Child

i = 4

Child

i = 4

Child

i = 4

Child

i = 4

Child

i = 4

Example – fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid; /* could be int */
int i;
pid = fork();

Copyright ©: University of Illinois CS 241 Staff 25

Example – fork()

if(pid > 0) {/* parent */

for(i=0; i < 1000; i++)
printf(“\t\t\tPARENT %d\n”, i);

} else { /* child */

for(i=0; i < 1000; i++)

printf(“CHILD %d\n”, i);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff 26

What will the output be?

Example – fork()
Possible Output

CHILD 0
CHILD 1
CHILD 2

PARENT 0PARENT 0
PARENT 1
PARENT 2
PARENT 3

CHILD 3
CHILD 4

PARENT 4
:

Copyright ©: University of Illinois CS 241 Staff 27

Example – fork()
Notes

� i is copied between parent and child

� Switching between parent and child
depends on many factors
� Machine load, system process scheduling

� I/O buffering effects amount of output shown
� Output interleaving is nondeterministic

� Cannot determine output by looking at code

Copyright ©: University of Illinois CS 241 Staff 28

Waiting for a child to finish –
wait()

#include <sys/types.h>
#include <wait.h>
pid_t wait(int *status);

� Suspend calling process until child has finished
Returns:� Returns:
� Process ID of terminated child on success
� -1 on error, sets errno

� Parameters:
� status : status information set by wait and evaluated

using specific macros defined for wait .

Copyright ©: University of Illinois CS 241 Staff 29

Waiting for any child to finish

#include <errno.h>

#include <sys/wait.h>

pid_t childpid;

childpid = wait(NULL);

if (childpid != -1)

printf(“waited for child with pid %ld\n”,

childpid);

(see “man 2 wait ”)

Copyright ©: University of Illinois CS 241 Staff 30

wait() Function

� Allows parent process
to wait (block) until
child finishes

� Causes the caller to

errno cause
ECHILD Caller has no

unwaited-for
children

Copyright ©: University of Illinois CS 241 Staff 31

� Causes the caller to
suspend execution
until child’s status is
available

children

EINTR Function was
interrupted by
signal

EINVAL Options
parameter of
waitpid was
invalid

Waiting for a child to finish –
waitpid()

#include <sys/types.h>
#include <wait.h>
pid_t waitpid(pid_t pid, int *status, int

options);

� Suspend calling process until child specified by pid � Suspend calling process until child specified by pid
has finished

� Returns:
� Process ID of terminated child on success
� 0 if WNOHANGand no child available, sets errno

� -1 on error, sets errno

� Parameters:
� status : status information set by wait and evaluated

using specific macros defined for wait .
Copyright ©: University of Illinois CS 241 Staff 32

Waiting for a child to finish –
waitpid()

#include <sys/types.h>
#include <wait.h>
pid_t waitpid(pid_t pid, int *status, int

options);

� Suspend calling process until child specified by pid � Suspend calling process until child specified by pid
has finished

� Parameters:
� pid :

� < -1: wait for any child process whose process group ID is
equal to the absolute value of pid .

� -1 wait for any child process (same as wait)
� 0 wait for any child process whose process group ID is equal

to that of the calling process.
� > 0 wait for the child whose process ID is equal to the value

of pid .

Copyright ©: University of Illinois CS 241 Staff 33

Waiting for a child to finish –
waitpid()

#include <sys/types.h>
#include <wait.h>
pid_t waitpid(pid_t pid, int *status, int

options);

� Suspend calling process until child specified by pid � Suspend calling process until child specified by pid
has finished

� Parameters:
� options :

� WNOHANG: return immediately if no child has exited.
� WUNTRACED: return for children that are stopped, and whose

status has not been reported.

Copyright ©: University of Illinois CS 241 Staff 34

When good processes die

Copyright ©: University of Illinois CS 241 Staff 35

Process Termination

� Upon completion of last statement
� A process automatically asks the OS to delete it
� All of the child’s resources are de-allocated
� Child process may return output to parent process� Child process may return output to parent process

� Other termination possibilities: Aborted by parent
process
� Child has exceeded its usage of some resources
� Task assigned to child is no longer required
� Parent is exiting and OS does not allow child to continue

without parent

Copyright ©: University of Illinois CS 241 Staff 36

Process Termination

� Voluntary
termination
� Normal exit

End of main()

� Involuntary
termination
� Fatal error

Divide by 0, core � End of main()

� Error exit
� exit(2)

� Divide by 0, core
dump / seg fault

� Killed by another
process
� kill procID, end

task

Copyright ©: University of Illinois CS 241 Staff 37

How to List all Processes?

� On Windows: run Windows task
manager
� Hit Control+ALT+delete
� Click on the “processes” tab

� On UNIX
� > ps –e also, pstree

� Try “man ps ”

Copyright ©: University of Illinois CS 241 Staff 38

Example – fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid; /* could be int */

How can you use
ps to see the

processes that
are created?

pid_t pid; /* could be int */
int i;
pid = fork();
if(pid > 0) { /* parent */

for(i=0; i < 1000; i++)
printf(“\t\t\tPARENT %d\n”, i);

}

else { /* child */

for(i=0; i < 1000; i++)

printf(“CHILD %d\n”, i);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff 39

Example – fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid; /* could be int */

How can you use
ps to see the

processes that
are created?

pid_t pid; /* could be int */
int i;
pid = fork();
if(pid > 0) { /* parent */

for(i=0; i < 1000; i++)
printf(“\t\t\tPARENT %d\n”, i);

}

else { /* child */

for(i=0; i < 1000; i++)

printf(“CHILD %d\n”, i);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff 40

sleep(30);

System view of processes
(Next)

� 5 state Process Model
� Process Control Block
� Context Switch� Context Switch

Copyright ©: University of Illinois CS 241 Staff 41

