
System Calls and I/O

Copyright ©: University of Illinois CS 241 Staff 1

This lecture

� Goals
� Get you familiar with necessary basic system & I/O calls to

do programming

� Things covered in this lecture
� Basic file system calls
� I/O calls
� Signals

� Note: we will come back later to discuss the above
things at the concept level

Copyright ©: University of Illinois CS 241 Staff 2

System Calls versus Function
Calls?

Copyright ©: University of Illinois CS 241 Staff 3

Process

Function Call

System Calls versus Function
Calls

fnCall()

Caller and callee are in the same
Process
- Same user
- Same “domain of trust”

Copyright ©: University of Illinois CS 241 Staff 4

System Calls versus Function
Calls

fnCall()

Process

Function Call

sysCall()

Process

System Call

Copyright ©: University of Illinois CS 241 Staff 5

Caller and callee are in the same
Process
- Same user
- Same “domain of trust”

OS

- OS is trusted; user is not.
- OS has super-privileges; user does not
- Must take measures to prevent abuse

System Calls

� System Calls
� A request to the operating system to perform some activity

� System calls are expensive
� The system needs to perform many things before � The system needs to perform many things before

executing a system call
� The computer (hardware) saves its state
� The OS code takes control of the CPU, privileges are

updated.
� The OS examines the call parameters
� The OS performs the requested function
� The OS saves its state (and call results)
� The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff 6

Steps for Making a System
Call (Example: read call)

6: Switch to kernel
mode

9: Return to user
mode

10: Return to user
program

count = read(fd, buffer, nbytes);

Copyright ©: University of Illinois CS 241 Staff 7

1 – 3: Push
parameter (in
reverse order)

4 – 5: Library call

7: Find system call
handler

8: Run handler

program

11: Clean up

Examples of System Calls

� Examples
� getuid() //get the user ID
� fork() //create a child process

exec() //executing a program� exec() //executing a program

� Don’t mix system calls with standard library
calls
� Differences?
� Is printf() a system call?
� Is rand() a system call?

Copyright ©: University of Illinois CS 241 Staff 8

man syscalls

Major System Calls

Process Management
pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate process execution and return status exit(status) Terminate process execution and return status

Copyright ©: University of Illinois CS 241 Staff 9

File Management
fd = open(file, how, ...) Open a file for reading, writing or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

position = lseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get a file’s status information

Today

Directory and File System Management
s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(name, name) Create a new entry, name, pointing to name

s = unlink(name) Remove a directory entry

Major System Calls

s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

Miscellaneous
s = chdir(dirname) Change the working directory

s = chmod(name, mode) Change a file’s protection bits

s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get the elapsed time since January 1, 1970

Copyright ©: University of Illinois CS 241 Staff 10

File System and I/O Related
System Calls

� A file system
� A means to organize, retrieve, and

updated data in persistent storageupdated data in persistent storage
� A hierarchical arrangement of directories
� Bookkeeping information (file metadata)

� File length, # bytes, modified timestamp, etc

� Unix file system
� Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff 11

Why does the OS control I/O?

� Safety
� The computer must ensure that if a program has

a bug in it, then it doesn't crash or mess up
� The system� The system
� Other programs that may be running at the same time

or later

� Fairness
� Make sure other programs have a fair use of

device

Copyright ©: University of Illinois CS 241 Staff 12

Basic Unix Concepts

� Input/Output – I/O
� Per-process table of I/O channels
� Table entries describe files, sockets, devices, pipes, etc.
� Table entry/index into table called “file descriptor”
� Unifies I/O interface� Unifies I/O interface

Copyright ©: University of Illinois CS 241 Staff 13

user space

pipe

file

socket
Per-process file

descriptor
table

kernel
system open file

table

Basic Unix Concepts

� Error Model
� errno variable

� Unix provides a globally accessible integer variable that contains an
error code number

� Return valueReturn value
� 0 on success
� -1 on failure for functions returning integer values
� NULL on failure for functions returning pointers

� Examples (see errno.h)
#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or director y */

#define ESRCH 3 /* No such process */

#define EINTR 4 /* Interrupted system call */

#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or addres s */

Copyright ©: University of Illinois CS 241 Staff 14

System Calls for I/O

� Get information about a file
int stat(const char* name, struct stat* buf);

� Open (and/or create) a file for reading, writing or both
int open (const char* name, in flags);int open (const char* name, in flags);

� Read data from one buffer to file descriptor
size_t read (int fd, void* buf, size_t cnt);

� Write data from file descriptor into buffer
size_t write (int fd, void* buf, size_t cnt);

� Close a file
int close(int fd);

Copyright ©: University of Illinois CS 241 Staff 15

System Calls for I/O

� They look like regular procedure calls but
are different
� A system call makes a request to the operating

system by trapping into kernel modesystem by trapping into kernel mode
� A procedure call just jumps to a procedure

defined elsewhere in your program

� Some library procedure calls may
themselves make a system call
� e.g., fopen() calls open()

Copyright ©: University of Illinois CS 241 Staff 16

File: Statistics

#include <sys/stat.h>
int stat(const char* name, struct stat* buf);

� Get information about a file
� Returns:

� 0 on success
-1 on error, sets � -1 on error, sets errno

� Parameters:
� name: Path to file you want to use

� Absolute paths begin with “/ ”, relative paths do not

� buf : Statistics structure
� off_t st_size : Size in bytes
� time_t st_mtime : Date of last modification. Seconds since January 1,

1970

� Also
int fstat(int filedes, struct stat *buf);

Copyright ©: University of Illinois CS 241 Staff 17

Example - (stat())

#include <unistd.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

int main(int argc, char **argv) { int main(int argc, char **argv) {

struct stat fileStat;

if(argc != 2)

return 1;

if(stat(argv[1], &fileStat) < 0)

return 1;

printf("Information for %s\n",argv[1]);

printf("---------------------------\n");

printf("File Size: \t\t%d bytes\n", fileStat.st_siz e);
printf("Number of Links: \t%d\n", fileStat.st_nlink);

printf("File inode: \t\t%d\n", fileStat.st_ino);

Copyright ©: University of Illinois CS 241 Staff 18

Example - (stat())

printf("File Permissions: \t");

printf((S_ISDIR (fileStat.st_mode)) ? "d" : "-");

printf((fileStat.st_mode & S_IRUSR) ? "r" : "-");

printf((fileStat.st_mode & S_IWUSR) ? "w" : "-");

printf((fileStat.st_mode & S_IXUSR) ? "x" : "-");

printf((fileStat.st_mode & S_IRGRP) ? "r" : " - "); printf((fileStat.st_mode & S_IRGRP) ? "r" : " - ");

printf((fileStat.st_mode & S_IWGRP) ? "w" : "-");

printf((fileStat.st_mode & S_IXGRP) ? "x" : "-");

printf((fileStat.st_mode & S_IROTH) ? "r" : "-");

printf((fileStat.st_mode & S_IWOTH) ? "w" : "-");

printf((fileStat.st_mode & S_IXOTH) ? "x" : "-");

printf("\n\n"); printf("The file %s a symbolic link \n",
(S_ISLNK(fileStat.st_mode)) ? "is" : "is not");

return 0;

}

Copyright ©: University of Illinois CS 241 Staff 19

Useful Macros: File types

� Is file a symbolic
link
� S_ISLNK

� Is file a block
device
� S_ISBLK

� Is file a regular file
� S_ISREG

� Is file a character
device
� S_ISCHR

� Is file a FIFO
� S_ISFIFO

� Is file a unix socket
� S_ISSOCK

Copyright ©: University of Illinois CS 241 Staff 20

Useful Macros: File Modes

� S_IRWXU

� read, write,
execute/search by
owner

� S_IRGRP

� read permission, group

� S_IRWXO

� read, write,
� S_IRUSR

� read permission, owner

� S_IWUSR

� write permission, owner

� S_IXUSR

� execute/search
permission, owner

� read, write,
execute/search by
others

Copyright ©: University of Illinois CS 241 Staff 21

Example - (stat())

Information for testfile.sh

File Size: 36 bytes

Number of Links: 1

File inode: 180055

File Permissions: - rwxr - xr - x File Permissions: - rwxr - xr - x

The file is not a symbolic link

Copyright ©: University of Illinois CS 241 Staff 22

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char* path, int flags [, int mode]);

� Open (and/or create) a file for reading, writing or both� Open (and/or create) a file for reading, writing or both
� Returns:

� Return value ≥ 0 : Success - New file descriptor on success
� Return value = -1: Error, check value of errno

� Parameters:
� path : Path to file you want to use

� Absolute paths begin with “/ ”, relative paths do not

� flags : How you would like to use the file
� O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 23

Example (open())

#include <fcntl.h>

#include <errno.h>

extern int errno;

main() {

Argument: string
Output: the string, a colon, and a
description of the error condition
stored in errnomain() {

int fd;

fd = open("foo.txt", O_RDONLY);

printf("%d\n", fd);

if (fd=-1) {

printf ("Error Number %d\n", errno);

perror("Program");

}

}

Copyright ©: University of Illinois CS 241 Staff 24

stored in errno

File: Close

#include <fcntl.h>

int close(int fd);

� Close a file
Tells the operating system you are done with a file � Tells the operating system you are done with a file
descriptor

� Return:
� 0 on success
� -1 on error, sets errno

� Parameters:
� fd : file descriptor

Copyright ©: University of Illinois CS 241 Staff 25

Example (close())

#include <fcntl.h>

main(){

int fd1;

if((fd1 = open(“foo.txt", O_RDONLY)) < 0){if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

perror("c1");

exit(1);

}

if (close(fd1) < 0) {

perror("c1");

exit(1);

}

printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 26

Example (close())

#include <fcntl.h>

main(){

int fd1;

if((fd1 = open(“foo.txt", O_RDONLY)) < 0){if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

perror("c1");

exit(1);

}

if (close(fd1) < 0) {

perror("c1");

exit(1);

}

printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 27

After close, can you still use the
file descriptor?

Why do we need to close a file?

File: Read

#include <fcntl.h>

size_t read (int fd, void* buf, size_t cnt);

� Read data from one buffer to file descriptor
� Read size bytes from the file specified by fd into the memory location

pointed to by bufpointed to by buf

� Return: How many bytes were actually read
� Number of bytes read on success
� 0 on reaching end of file
� -1 on error, sets errno

� -1 on signal interrupt, sets errno to EINTR

� Parameters:
� fd : file descriptor
� buf : buffer to read data from
� cnt : length of buffer

Copyright ©: University of Illinois CS 241 Staff 28

File: Read

size_t read (int fd, void* buf, size_t cnt);

� Things to be careful about
� buf needs to point to a valid memory location with length

not smaller than the specified size not smaller than the specified size
� Otherwise, what could happen?

� fd should be a valid file descriptor returned from open()
to perform read operation
� Otherwise, what could happen?

� cnt is the requested number of bytes read, while the
return value is the actual number of bytes read
� How could this happen?

Copyright ©: University of Illinois CS 241 Staff 29

Example (read())

#include <fcntl.h>

main() {

char *c;

int fd, sz;

sz = read(fd, c, 10);

printf("called

read(%d, c, 10).

returned that %d

bytes were

c = (char *) malloc(100

* sizeof(char));

fd = open(“foo.txt",

O_RDONLY);

if (fd < 0) {

perror("r1");

exit(1);

}

bytes were

read.\n", fd, sz);

c[sz] = '\0';

printf("Those bytes

are as follows:

%s\n", c);

close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 30

File: Write

#include <fcntl.h>

size_t write (int fd, void* buf, size_t cnt);

� Write data from file descriptor into buffer
� Writes the bytes stored in buf to the file specified by fd

� Return: How many bytes were actually written� Return: How many bytes were actually written
� Number of bytes written on success
� 0 on reaching end of file
� -1 on error, sets errno

� -1 on signal interrupt, sets errno to EINTR

� Parameters:
� fd : file descriptor
� buf : buffer to write data to
� cnt : length of buffer

Copyright ©: University of Illinois CS 241 Staff 31

File: Write

size_t write (int fd, void* buf, size_t cnt);

� Things to be careful about
� The file needs to be opened for write operations
� buf needs to be at least as long as specified by � buf needs to be at least as long as specified by

cnt

� If not, what will happen?

� cnt is the requested number of bytes to write,
while the return value is the actual number of
bytes written
� How could this happen?

Copyright ©: University of Illinois CS 241 Staff 32

Example (write())

#include <fcntl.h>

main()

{

int fd, sz;

sz = write(fd, "cs241\n",

strlen("cs241\n"));

printf("called write(%d,

\ "cs360 \ \ n\ ", %d).

fd = open("out3",

O_RDWR | O_CREAT |

O_APPEND, 0644);

if (fd < 0) {

perror("r1");

exit(1);

}

\ "cs360 \ \ n\ ", %d).

it returned %d\n",

fd, strlen("cs360\n"),

sz);

close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 33

File Pointers

� All open files have a "file pointer" associated
with them to record the current position for
the next file operation
On open� On open
� File pointer points to the beginning of the file

� After reading/write m bytes
� File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff 34

File: Seek

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

� Explicitly set the file offset for the open file
� Return: Where the file pointer is� Return: Where the file pointer is

� the new offset, in bytes, from the beginning of the file
� -1 on error, sets errno , file pointer remains unchanged

� Parameters:
� fd : file descriptor
� offset : indicates relative or absolute location
� whence : How you would like to use lseek

� SEEK_SET, set file pointer to offset bytes from the beginning of the file
� SEEK_CUR, set file pointer to offset bytes from current location
� SEEK_END, set file pointer to offset bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff 35

File: Seek Examples

� Random access
� Jump to any byte in a file

� Move to byte #16
newpos = lseek(fd, 16, SEEK_SET);

� Move forward 4 bytes
newpos = lseek(fd, 4, SEEK_CUR);

� Move to 8 bytes from the end
newpos = lseek(fd, -8, SEEK_END);

Copyright ©: University of Illinois CS 241 Staff 36

Example (lseek())

c = (char *) malloc(100 *
sizeof(char));

fd = open(“foo.txt", O_RDONLY);

if (fd < 0) {

perror("r1");

i = lseek(fd, 0, SEEK_CUR);

printf("lseek(%d, 0, SEEK_CUR)
returns that the current
offset is %d\n\n", fd, i);

printf("now, we seek to the exit(1);

}

sz = read(fd, c, 10);

printf("We have opened in1, and
called read(%d, c, 10).\n",
fd);

c[sz] = '\0';

printf("Those bytes are as
follows: %s\n", c);

printf("now, we seek to the
beginning of the file and
call read(%d, c, 10)\n",
fd);

lseek(fd, 0, SEEK_SET);

sz = read(fd, c, 10);

c[sz] = '\0';

printf("The read returns the
following bytes: %s\n", c);

…

Copyright ©: University of Illinois CS 241 Staff 37

Standard Input, Standard
Output and Standard Error

� Every process in Unix has three predefined file descriptors
� File descriptor 0 is standard input (STDIN)
� File descriptor 1 is standard output (STDOUT)
� File descriptor 2 is standard error (STDERR)

Read from standard input, � Read from standard input,
� read(0, ...);

� Write to standard output
� write(1, ...);

� Two additional library functions
� printf();

� scanf();

Copyright ©: University of Illinois CS 241 Staff 38

I/O Library Calls
� Every system call has paired procedure calls from the

standard I/O library:

� System Call
� open

� Standard I/O call (stdio.h)
� fopen

� close

� read/write

� lseek

� fclose

� getchar/putchar,
getc/putc, fgetc/fputc,
fread/fwrite,
gets/puts, fgets/fputs,
scanf/printf,
fscanf/fprintf

� fseek

Copyright ©: University of Illinois CS 241 Staff 39

Stream Processing - fgetc()

int fgetc(FILE *stream);

� Read the next character from stream

� Return
An unsigned char cast to an int� An unsigned char cast to an int

� EOFon end of file

� Error

int getchar(void);
� Read the next character from stdin

int getc(void);

� Similar to , but implemented as a macro, faster and
potentially unsafe

Copyright ©: University of Illinois CS 241 Staff 40

Similar functions for writing:
int fputc(int c, FILE *stream);
int putchar(int c);
int putc(int c, FILE *stream);

Stream Processing - fgets()

char *fgets(char *s, int size, FILE
*stream);

� Read in at most one less than size characters
from streamfrom stream
� Stores characters in buffer pointed to by s.
� Reading stops after an EOFor a newline.

� If a newline is read, it is stored into the buffer.
� A '\0' is stored after the last character in the buffer.

� Return
� s on success
� NULL on error or on EOFand no characters read

Copyright ©: University of Illinois CS 241 Staff 41

Similar:
int fputs(const char *s, FILE *stream);

Stream Processing

char *gets(char *s);

� NOTE: DO NOT USE
� Reading a line that overflows the array pointed to by s

causes undefined results. causes undefined results.
� The use of is fgets() recommended

Copyright ©: University of Illinois CS 241 Staff 42

Stream Processing - fputs()

int fputs(const char *s, FILE *stream);

� Write the null-terminated string pointed to by s to
the stream pointed to by stream .
� The terminating null byte is not written� The terminating null byte is not written

� Return
� Non-neg number on success
� EOFon error

char *puts(char *s);

� Write to stdout
� Appends a newline character

Copyright ©: University of Illinois CS 241 Staff 43

Example: (fgets() - fputs())

#include <stdio.h>

int main() {

FILE * fp = fopen("test.txt", "r");

char line[100];

while(fgets(line, sizeof(line), fp) != NULL)
fputs(line, stdout);

fclose(fp);

return 0;

}

Copyright ©: University of Illinois CS 241 Staff 44

Stream Processing - fscanf()

int scanf(const char *format, ...);

� Read from the standard input stream stdin
� Stores read characters in buffer pointed to by s.

� Return� Return
� Number of successfully matched and assigned input items
� EOFon error

int fscanf(FILE *stream, const char *fmt, ...);

� Read from the named input stream

int sscanf(const char *s, const char *fmt, ...);

� Read from the string s

Copyright ©: University of Illinois CS 241 Staff 45

Example: (scanf())

� Input: 56789 56a72

#include <stdio.h>

int main() {
What are i , x , and name

after the call to int i;

float x;

char name[50];

scanf("%2d%f %[0123456789]", &i, &x, name);

}

Copyright ©: University of Illinois CS 241 Staff 46

after the call to
scanf () ?

What will a subsequent call to
getchar () return?

Example: stdin

int x;

char st[31];

/* read first line of input */

What will
this code
really do?

printf("Enter an integer: ");

scanf("%d", &x);

/* read second line of input */

printf("Enter a line of text: ");

fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 47

really do?

Example: stdin

int x;

char st[31];

/* read first line of input */

What will
this code
really do?

printf("Enter an integer: ");

scanf("%d", &x);

/* read second line of input */

printf("Enter a line of text: ");

fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 48

really do?

Input is buffered, but scanf() did not read all of
the first line

Example: stdin

int x;

char st[31];

/* read first line */

printf("Enter an

void dump_line(FILE * fp
) {

int ch;

while((ch = fgetc(fp))

integer: ");

scanf("%d", &x);

dump_line(stdin);

/* read second line */

printf("Enter a line of
text: ");

fgets(st, 31, stdin);

!= EOF &&

ch != '\n')

/* null body */;

}

Copyright ©: University of Illinois CS 241 Staff 49

Read and dump all
characters from input

buffer until a '\n'
after scanf()

