[System Calls and 1/O

This lecture

Goals

o Get you familiar with necessary basic system & I/O calls to
do programming

Things covered in this lecture
o Basic file system calls

o /O calls

o Signals

Note: we will come back later to discuss the above
things at the concept level

Copyright ©: University of Illinois CS 241 Staff 2 E

|

System Calls versus Function
Calls?

Copyright ©: University of Illinois CS 241 Staff

System Calls versus Function
Calls

Function Call

Process

fnCall()

Caller and callee are in the same
Process

- Same user

- Same “domain of trust”

Copyright ©: University of Illinois CS 241 Staff 4 E

System Calls versus Function

Calls

Function Call System Call
Process Process
fnCall() sysCall()
OS
Caller and callee are in the same
Process
- Same user - OS is trusted; user Is not.

- Same “domain of trust”

- OS has super-privileges; user does not

- Must take measures to prevent abuse
Copyright ©: University of Illinois CS 241 Staff

s |

System Calls

System Calls
o Arequest to the operating system to perform some activity

System calls are expensive
o The system needs to perform many things before
executing a system call
The computer (hardware) saves its state

The OS code takes control of the CPU, privileges are
updated.

The OS examines the call parameters

The OS performs the requested function

The OS saves its state (and call results)

The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff 6 E

Steps for Making a System

Call (Example: read call)

count = read(fd, buffer, nbytes);

Address
OxFFFFFFFF

—

Return to caller

6: Switch to kernel 1

Trap to the kernel

mode

User space i

Put code for read in register

(6]

Increment SP 11

10,

4 —5: Library call 1

Push fd

> ~ Call read

1 — 3: Push :
parameter (in
reverse order)

Kernel space
(Operating system)

NS

or

3
2| Push &buffer
1| Push nbytes

s (. Find system call

|'| handler

9: Return to user

] mode

;

Library
procedure

read 10: Return to user

| program

11: Clean up

A4

Dispatch

7 8

Sys
han

call
dler

}

User program
calling read

8: Run handler

a1

Examples of System Calls

Examples

o getuid() //get the user ID

o fork() //create a child process
o exec() //lexecuting a program

Don’t mix system calls with standard library
calls

o Differences?
o Is printf() a system call?

o lIsrand() a system call?

man syscalls

Copyright ©: University of Illinois CS 241 Staff 8 E

Major System Calls

Process Management

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

S = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File Management

Today

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

Copyright ©: University of Illinois CS 241 Staff

Major System Calls

Directory and File System Management

s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(name, name) Create a new entry, name, pointing to name
s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

S = umount(special) Unmount a file system

Miscellaneous

s = chdir(dirname) Change the working directory

s = chmod(name, mode) Change a file’s protection bits

s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get the elapsed time since January 1, 1970

Copyright ©: University of Illinois CS 241 Staff 10 E

|

File System and I/O Related
System Calls

A file system

o A means to organize, retrieve, and
updated data in persistent storage

o A hierarchical arrangement of directories

o Bookkeeping information (file metadata)
File length, # bytes, modified timestamp, etc

Unix file system
o Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff

Why does the OS control I/0O?

Safety

o The computer must ensure that if a program has
a bug in it, then it doesn't crash or mess up
The system

Other programs that may be running at the same time
or later

Fairness

o Make sure other programs have a fair use of
device

Copyright ©: University of Illinois CS 241 Staff 12 E

Basic Unix Concepts

= Input/Output — I/O
o Per-process table of I/O channels
o Table entries describe files, sockets, devices, pipes, etc.
o Table entry/index into table called “file descriptor”
o Unifies I/O interface

user space kernel :
system open file -
file
table
. _—— pipe
Per-process file

descriptor - socket

table PS

®

Copyright ©: University of Illinois CS 241 Staff o

Basic Unix Concepts

Error Model

o errno Vvariable

Unix provides a globally accessible integer variable that contains an

error code number

o Return value
0 on success
-1 on failure for functions returning integer values
NULL on failure for functions returning pointers

o Examples (see errno.n)
#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or director y */
#define ESRCH 3 /*No such process */

#define EINTR 4 /* Interrupted system call */
#define EIO 5 [*1/O error*/

#define ENXIO 6 /* No such device or addres s */

Copyright ©: University of Illinois CS 241 Staff

System Calls for 1/O

Get information about a file
Int stat(const char* name, struct stat* buf);

Open (and/or create) a file for reading, writing or both
Int open (const char* name, in flags);

Read data from one buffer to file descriptor
size tread (int fd, void* buf, size t cnt);

Write data from file descriptor into buffer
size t write (int fd, void* buf, size_t cnt);

Close a file
Int close(int fd);

Copyright ©: University of Illinois CS 241 Staff 15 E

System Calls for 1/O

They look like regular procedure calls but
are different

o A system call makes a request to the operating
system by trapping into kernel mode

o A procedure call just jJumps to a procedure
defined elsewhere in your program

Some library procedure calls may
themselves make a system call
o e.g., fopen() calls open()

Copyright ©: University of Illinois CS 241 Staff

File: Statistics

#include <sys/stat.h>

int stat(const char* name, struct stat* buf);
Get information about a file
Returns:
o 0 on success
o -1 on error, sets errno
Parameters:

O name: Path to file you want to use
Absolute paths begin with “/ ”, relative paths do not
o buf : Statistics structure

off tst_size . Size in bytes
time_t st mtime : Date of last modification. Seconds since January 1,
1970

Also
int fstat(int filedes, struct stat *buf);

Copyright ©: University of Illinois CS 241 Staff

Example - (stat())

#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
int main(int argc, char **argv) {
struct stat fileStat;
if(argc = 2)
return 1;
if(stat(argv[1], &fileStat) < 0)
return 1;
printf("Information for %s\n",argv[1]);

printf("File Size: \t\t%d bytes\n", fileStat.st_siz
printf("Number of Links: \t%d\n", fileStat.st_nlink

printf("File inode: \t\t%d\n", fileStat.st_ino);

Copyright ©: University of Illinois CS 241 Staff

Example - (stat())

printf("File Permissions: \t");
printf((S_ISDIR (fileStat.st_mode)) ? "d" : "-");

printf((fileStat.st._ mode & S IRUSR) ?"r":"-");
printf((fileStat.st._ mode & S IWUSRH ? "w" : "-");
printf((fileStat.st._ mode & S IXUSR) ? "x" . "-");
printf((fileStat.st_mode & S IRGRF) ?2"r":

printf((fileStat.st_mode & S IWGRR ? "w" : "-");
printf((fileStat.st_mode & S_IXGRP) ? "x" : "-"),
printf((fileStat.st._ mode & S IROTH) ?2"r* . "-");
printf((fileStat.st._ mode & S IWOTH ? "w" : "-");
printf((fileStat.st._ mode & S IXOTH) ? "x" . "-");

printf("\n\n"); printf("The file %s a symbolic link
(S_ISLNK (fileStat.st_mode)) ? "is" : "is not");

return O;

Copyright ©: University of Illinois CS 241 Staff

\n",

[Useful Macros: File types

Is file a symbolic
link
o S_ISLNK

Is file a reqular file
o S ISREG

Is file a character
device
o S ISCHR

Is file a block
device
o S ISBLK

Is file a FIFO
o S _ISFIFO

Is file a unix socket
o S ISSOCK

Copyright ©: University of Illinois CS 241 Staff 20 E

Useful Macros: File Modes

S IRWXU S IRGRP

o read, write, o read permission, group
execute/search by S IRWXO
owner -

o read, write,

S_IRUSR execute/search by
o read permission, owner others

S IWUSR

O Write permission, owner

S IXUSR

O execute/search
permission, owner

Copyright ©: University of Illinois CS 241 Staff 21 E

Example - (stat())

Information for testfile.sh

File Size: 36 bytes
Number of Links: 1
File inode: 180055
File Permissions: - TWXI - Xr - X

The file is not a symbolic link

Copyright ©: University of Illinois CS 241 Staff

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

Int open (const char* path, int flags [, int mode]);

Open (and/or create) a file for reading, writing or both

Returns:

o Return value = 0 : Success - New file descriptor on success
o Return value = -1: Error, check value of errno

Parameters:
o path : Path to file you want to use
Absolute paths begin with “/ ”, relative paths do not

o flags :How you would like to use the file

O_RDONLYread only, O WRONLYvrite only, O RDWRead and write,
O_CREATcreate file if it doesn’t exist, O_EXCL prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 23 E

Example (open()

#include <fcntl.h>
#include <errno.h>
extern int errno;

main() {
int fd; /

)

Argument: string
Output: the string, a colon, and a

description of the error condition
stored in errno

fd = open(“foo.txt", O_RDONLY)/

printf("%d\n", fd);
if (fd=-1) {

printf ("Error Number %d\n", errno);

perror("Program");

Copyright ©: University of Illinois CS 241 Staff 24 E

File: Close

#include <fcntl.h>
Int close(int fd);

Close a file

o Tells the operating system you are done with a file
descriptor

Return:

o 0 on success
o -1 on error, sets errno

Parameters:
o fd : file descriptor

Copyright ©: University of Illinois CS 241 Staff

Example (close())

#include <fcntl.h>
main(){
int fd1;

if((fd1 = open(“foo.txt", O_RDONLY)) < 0){
perror("cl");

exit(1);

}

if (close(fd1) < 0) {
perror("cl");
exit(1);

}

printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 26 E

Example (close())

#include <fcntl.h>
main(){
int fd1;

if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

perror("cl");

exit(1);
] After cloge, can you still use the
if (close(fd1) < 0) { file descriptor?

perror("cl");

exit(1); Why do we need to close a file?

}
printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 27 E

File: Read

#include <fcntl.h>
size tread (int fd, void* buf, size_t cnt);

Read data from one buffer to file descriptor

o Read size bytes from the file specified by fd into the memory location
pointed to by buf

Return: How many bytes were actually read
o Number of bytes read on success

o 0 on reaching end of file

o -1onerror, sets errno

o -1 on signal interrupt, sets errno to EINTR

Parameters:

o fd : file descriptor

o buf : buffer to read data from
o cnt : length of buffer

Copyright ©: University of Illinois CS 241 Staff

File: Read

size_tread (int fd, void* buf, size_t cnt);

Things to be careful about
o buf needs to point to a valid memory location with length
not smaller than the specified size
Otherwise, what could happen?
o fd should be a valid file descriptor returned from open()
to perform read operation
Otherwise, what could happen?

o cnt is the requested number of bytes read, while the
return value is the actual number of bytes read
How could this happen?

Copyright ©: University of Illinois CS 241 Staff 29 E

Example (read())

#include <fcntl.h>
main() {

char *c;

int fd, sz;

c = (char *) malloc(100
* sizeof(char));
fd = open(“foo.txt",

O_RDONLY);
if (fd < 0) {
perror("rl");
exit(1);
} }

sz = read(fd, c, 10);

printf("called
read(%d, c, 10).
returned that %d
bytes were
read.\n", fd, sz);

c[sz] = "\O;

printf("Those bytes
are as follows:
%s\n", C);
close(fd);

Copyright ©: University of Illinois CS 241 Staff

File: Write

#include <fcntl.h>
size_t write (int fd, void* buf, size t cnt);
Write data from file descriptor into buffer
o Writes the bytes stored in buf to the file specified by fd
Return: How many bytes were actually written
o Number of bytes written on success
o 0 on reaching end of file
o -1onerror, sets errno
o -1 on signal interrupt, sets errno to EINTR
Parameters:
o fd : file descriptor
o buf : buffer to write data to
o cnt : length of buffer

Copyright ©: University of Illinois CS 241 Staff

File: Write

size_t write (int fd, void* buf, size _t cnt);

Things to be careful about

O
O

The file needs to be opened for write operations

buf needs to be at least as long as specified by
cnt

If not, what will happen?

cnt is the requested number of bytes to write,

while the return value is the actual number of
bytes written
How could this happen?

Copyright ©: University of Illinois CS 241 Staff 32 E

Example (write())

#include <fcntl.h> sz = write(fd, "cs241\n",
main() strlen("cs241\n"));
{
int fd, sz; printf("called write(%d,
\ "cs360 \\ n\", %d).
fd = open("out3", it returned %d\n",
O_RDWR | O_CREAT | fd, strlen("cs360\n"),
O_APPEND, 0644); Sz);
if (fd < 0) {
perror("rl"); close(fd);
exit(1); }
}

Copyright ©: University of Illinois CS 241 Staff

[File Pointers

All open files have a "file pointer" associated
with them to record the current position for
the next file operation

On open
o File pointer points to the beginning of the file

After reading/write m bytes
o File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff 34 E

File: Seek

#include <unistd.h>
off _t Iseek(int fd, off t offset, int whence);

Explicitly set the file offset for the open file

Return: Where the file pointer is
o the new offset, in bytes, from the beginning of the file
o -1onerror, sets errno , file pointer remains unchanged

Parameters:
o fd : file descriptor
o offset :indicates relative or absolute location

o whence : How you would like to use Iseek
SEEK_ SET set file pointer to offset bytes from the beginning of the file
SEEK_ CURset file pointer to offset bytes from current location
SEEK_ ENDset file pointer to offset bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff

File: Seek Examples

Random access
o Jump to any byte in a file

Move to byte #16
newpos = Iseek(fd, 16, SEEK_SET);

Move forward 4 bytes
newpos = Iseek(fd, 4, SEEK_CUR);

Move to 8 bytes from the end
newpos = Iseek(fd, -8, SEEK_END);

Copyright ©: University of Illinois CS 241 Staff

Example (Iseek())

¢ = (char *) malloc(100 * | = Iseek(fd, 0, SEEK_CUR);
sizeof(char)); Lm_mmm SeeK(%0, U, SEER_CUR)

fd = open(“foo.txt", O _RDONLY); returns that the current
if (fd < 0){ offset is %d\n\n", fd, i);
perror("rl");
exit(1); printf("now, we seek to the
} beginning of the file and
call read(%d, c, 10)\n",
fd);

sz = read(fd, c, 10);

Iseek(fd, 0, SEEK_SET);

printf("We have opened inl, and =207 10
called read(%d, c, 10).\n", Sz rez'a (, ¢, 10);
fd); c[sz] = "\0';

c[sz] = "\0"; printf("The read returns the

following bytes: %s\n", c);
printf("Those bytes are as ollowing bytes: %s\n”, c)

follows: %s\n", ¢);

Copyright ©: University of Illinois CS 241 Staff

Standard Input, Standard
Output and Standard Error

Every process in Unix has three predefined file descriptors
o File descriptor 0O is standard input (STDIN)

o File descriptor 1 is standard output (STDOUT

o File descriptor 2 is standard error (STDERR

Read from standard input,

o read(O, ...);

Write to standard output

o write(l, ...);

Two additional library functions
o printf();

o scanf();

Copyright ©: University of Illinois CS 241 Staff

/O Library Calls

Every system call has paired procedure calls from the
standard 1/O library:

System Call Standard I/O call (stdio.h)
o open o fopen
o close o fclose
o read/write o getchar/putchar,
getc/putc, fgetc/fputc,
fread/fwrite,

gets/puts, fgets/fputs,
scanf/printf,
fscanf/fprintf

o Iseek o fseek

Copyright ©: University of Illinois CS 241 Staff 39

Stream Processing - fgetc()

Int fgetc(FILE *stream);
Read the next character from stream

Return
o Anunsigned char cast to an int
o EOFon end of file Similar functions for writing:
o Error !nt fputc(lnt. c, FILE *stream);
_ _ int putchar(int c);
Int getchar(void); int putc(int c, FILE *stream);
o Read the next character from stdin
Int getc(void);

o Similar to , but implemented as a macro, faster and
potentially unsafe

Copyright ©: University of Illinois CS 241 Staff 40 E

Stream Processing - fgets()

char *fgets(char *s, int size, FILE
*stream);
Read in at most one less than size characters
from stream

o Stores characters in buffer pointed to by s.
o Reading stops after an EOFor a newline.

o If anewline is read, it is stored into the buffer.
o A'\Q'" is stored after the last character in the buffer.

Return Similar:
' * * .
6 S ON SUCCeSsS int fputs(const char *s, FILE *stream);

o NULL on error or on EOFand no characters read

Copyright ©: University of Illinois CS 241 Staff 41 E

Stream Processing

char *gets(char *s);
NOTE: DO NOT USE

o Reading a line that overflows the array pointed to by s
causes undefined results.

o Theuse of isfgets() @ recommended

Copyright ©: University of Illinois CS 241 Staff

Stream Processing - fputs()

Int fputs(const char *s, FILE *stream);

Write the null-terminated string pointed to by s to
the stream pointed to by stream .

o The terminating null byte is not written

Return

o Non-neg number on success
o EOFon error

char *puts(char *s);
Write to stdout
o Appends a newline character

Copyright ©: University of Illinois CS 241 Staff

Example: (fgets()

#include <stdio.h>

iInt main() {

FILE * fp = fopen("test.txt", "r");
char line[100];

while(

fgets(line, sizeof(line), fp)

fputs(line, stdout);
fclose(fp);

return O;

- Tputs())

I= NULL)

Copyright ©: University of Illinois CS 241 Staff

Stream Processing - fscanf()

Int scanf(const char *format, ...);

Read from the standard input stream stdin
o Stores read characters in buffer pointed to by s.

Return
o Number of successfully matched and assigned input items
o EOFon error

int fscanf(FILE *stream, const char *fmt, ...);
o Read from the named input stream

Int sscanf(const char *s, const char *fmt, ...);
o Read from the string s

Copyright ©: University of Illinois CS 241 Staff 45 E

Example: (scanf())

Input: 56789 56a72
#include <stdio.h> :
| . What are |1 , X, and name
int main() {

int i; after the call to
float x; scanf () ?

char name[50];
scanf("%2d%f %[0123456789]", &I, &X, name);

What will a subsequent call to
getchar () return?

Copyright ©: University of Illinois CS 241 Staff 46 E

Example: stdin

Int X;
char st[31];

[* read first line of input */
printf("Enter an integer: ");
scanf("%d", &x);

[* read second line of input */

printf("Enter a line of text: ");
fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff

What will
this code
really do?

Example: stdin

Int X;
char st[31];

[* read first line of input */
printf("Enter an integer: ");
scanf("%d", &x);

[* read second line of input */
printf("Enter a line of text: ");
fgets(st, 31, stdin);

What will
this code
really do?

Input is buffered, but scanf() did not read all of

the first line

Copyright ©: University of Illinois CS 241 Staff

Example: stdin

int x;
char st[31];
[* read first line */

printf("Enter an
Integer: ");

scanf("%d", &x);
dump_line(stdin);
[* read second line */

printf("Enter a line of
text: ");

fgets(st, 31, stdin);

void dump_line(FILE * fp

) {

int ch;

while((ch = fgetc(fp))
I= EOF &&
ch!="n")
/* null body */;

}

Read and dump all

characters from input
buffer until a '\n'

after scanf()

Copyright ©: University of Illinois CS 241 Staff

o Wl

