
Operating Systems
Orientation

Copyright ©: University of Illinois CS 241 Staff 1

Objectives

� Explain the main purpose of operating systems and describe
milestones of OS evolution

� Explain fundamental machine concepts
� Instruction processing
� Memory hierarchy� Memory hierarchy
� Interrupts
� I/O

� Explain fundamental OS concepts
� System calls
� Processes
� Synchronization
� Files

� Explain the POSIX standard (UNIX specification)

Copyright ©: University of Illinois CS 241 Staff 2

OS Structure

Firefox Second Life
Yahoo
Chat

GMail

Application Software

Copyright ©: University of Illinois CS 241 Staff 33

NetworkHardware

Read/Write
Standard
Output

Device
Control

File
System

Communication

Operating System
Standard Operating System Interface (Virtual Machine)

POSIX
The UNIX Interface Standard

Firefox Second Life
Yahoo
Chat

GMail

Application Software

Copyright ©: University of Illinois CS 241 Staff 4

Read/Write
Standard
Output

Device
Control

File
System

Communication

Unix
POSIX Standard Interface

What is an Operating System?

� It is an extended machine
� Hides the messy details that must be performed
� Presents user with a virtual abstraction of the

machine, easier to usemachine, easier to use

� It is a resource manager
� Each program gets time with the resource
� Each program gets space on the resource

Copyright ©: University of Illinois CS 241 Staff 5

A Peek into Unix

Application

Libraries User space/level

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff 6

Portable OS Layer

Libraries User space/level

Kernel space/level

• User/kernel modes are
supported by hardware

•Some systems do not have
clear user-kernel boundary

Application

Applications
(Firefox, Emacs, grep)

Libraries

• Written by programmer
• Compiled by

programmer
• Use function calls

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff 7

Portable OS Layer

Libraries

Unix: Libraries

Application

Libraries (e.g., stdio.h)

• Provided pre-compiled
• Defined in headers
• Input to linker (compiler)
• Invoked like functions
• May be “resolved” when

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff 8

Portable OS Layer

Libraries (e.g., stdio.h) • May be “resolved” when
program is loaded

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff 9

Portable OS Layer

Libraries

• System calls (read,
open..)

• All “high-level” code

Typical Unix OS Structure

Application

Libraries • Bootstrap

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff 10

Portable OS Layer

Libraries • Bootstrap
• System initialization
• Interrupt and exception
• I/O device driver
• Memory management
• Kernel/user mode

switching
• Processor management

History of Computer
Generations

� Pre-computing generation 1792 - 1871
� Babbage’s “Analytical Engine”
� Purely mechanical --- but never worked
� A man before his time� A man before his time

� When this works, we’ll need software!
� First programming language

Copyright ©: University of Illinois CS 241 Staff 11

History of Computer
Generations

� Pre-computing generation 1792 – 1871
� First generation 1945 – 1955

� Vacuum tubes, relays, plug boards
� Seconds per operation!� Seconds per operation!

� Focus on numerical calculations

� No programming language
� Everything done using pure machine language or wiring electrical

circuits!

� No operating system
� Sign up for your time slot!

� Progress: Punch cards!

Copyright ©: University of Illinois CS 241 Staff 12

History of Computer
Generations

� Pre-computing generation 1792 – 1871
� First generation 1945 – 1955
� Second generation 1955 - 1965

Transistors, mainframes� Transistors, mainframes
� Large human component

Copyright ©: University of Illinois CS 241 Staff 13

History of Operating Systems

� Early systems
� bring cards to 1401
� read cards to tape
� put tape on 7094 which does computing
� put tape on 1401 which prints output

Copyright ©: University of Illinois CS 241 Staff 14

History of Computer
Generations

� Pre-computing generation 1792 – 1871
� First generation 1945 – 1955
� Second generation 1955 - 1965

Transistors, mainframes� Transistors, mainframes
� Large human component
� Solution: Batched jobs

Copyright ©: University of Illinois CS 241 Staff 15

History of Computer
Generations

� Pre-computing generation 1792 – 1871
� First generation 1945 – 1955
� Second generation 1955 – 1965

Third generation 1965 – 1980� Third generation 1965 – 1980
� Integrated circuits and multiprogramming
� IBM’s New model: all software and OS must work on all

platforms
� A beast!

� Progress: Multiprogramming
� Keep the CPU busy

Copyright ©: University of Illinois CS 241 Staff 16

History of Operating Systems

Memory
Management

� Multiprogramming/timesharing system
� Three jobs in memory – 3rd generation

Copyright ©: University of Illinois CS 241 Staff 17

Process
Management

History of Computer
Generations

� Pre-computing generation 1792 – 1871
� First generation 1945 – 1955
� Second generation 1955 – 1965

Third generation 1965 – 1980� Third generation 1965 – 1980
� Integrated circuits and multiprogramming
� IBM’s New model: all software and OS must work on all

platforms
� Progress: Multiprogramming and timesharing
� Progress: Spooling

� Always have something ready to run

� MULTICS + minicomputers == UNIX!

Copyright ©: University of Illinois CS 241 Staff 18

History of Computer
Generations

� Pre-computing generation 1792 – 1871
� First generation 1945 – 1955
� Second generation 1955 – 1965

Third generation 1965 – 1980� Third generation 1965 – 1980
� Fourth generation 1980 – present

� Personal computers
� Multi-processors
� Phones
� …

Copyright ©: University of Illinois CS 241 Staff 19

Computer Hardware Review

Monitor
The “Brains”

� Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 20

Bus

Early Pentium system

Copyright ©: University of Illinois CS 241 Staff 21

Computer Hardware Review

Monitor

Computer
operation and

� Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 22

CPU

Bus

operation and
data processing

Computer Hardware Review

Monitor

Stores data
and

Communication
between CPU,
Memory and I/O

� Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 23

Memory

Bus

CPU

and
programs

CPU, From CS231

� Fetch instruction from code memory
� Fetch operands from data memory
� Perform operation (and store result)� Perform operation (and store result)
� (Check interrupt line)
� Go to next instruction

� 'Conventional CPU'
(Ignore pipeline, optimization complexities)

Copyright ©: University of Illinois CS 241 Staff 24

CPU Registers

� Fetch instruction from code memory
� Fetch operands from data memory
� Perform operation (and store result)� Perform operation (and store result)
� Go to next instruction

� Note: CPU must maintain certain state
� Current instructions to fetch (program counter)
� Location of code memory segment
� Location of data memory segment

Copyright ©: University of Illinois CS 241 Staff 25

CPU Register Examples

� Hold instruction operands
� Point to start of

� Code segment
� Data segment
� Stack segment

� Point to current position of
� Instruction pointer
� Stack pointer

Copyright ©: University of Illinois CS 241 Staff 26

CPU Register Examples

� Hold instruction operands
� Point to start of

� Code segment
� Data segment
� Stack segment

� Point to current position of
� Instruction pointer
� Stack pointer

� Why stack?

Copyright ©: University of Illinois CS 241 Staff 27

Command-line arguments
and environment variables

Sample Layout for program
image in main memory

stack
Activation record for function calls
(return address, parameters,
saved registers, automatic variables

argc, argv, environmentHigh address

Uninitialized static data

Initialized static data

Program text

Copyright ©: University of Illinois CS 241 Staff 28

Processes have three
segments: text, data, stack

heap

Allocations from malloc family

Low address

Memory Hierarchy

� Locality of reference

Copyright ©: University of Illinois CS 241 Staff 29

1 KB

128 MB

4 GB

1TB

10 TB

1. Decreasing
cost per bit

2. Increasing
capacity

3. Increasing
access time

4. Decreasing
frequency
of access

Computer Hardware Review

Monitor
Move data
between
computer and
external

� Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 30

Bus
Memory

I/O
Devices

Bus

CPU
I/O

Devices
I/O

Devices
I/O

Devices

external
environment

I/O Device Access

� Systems Calls
� Application makes a system call
� Kernel translates to specific driver
� Driver starts I/O� Driver starts I/O
� Polls device for completion

� Interrupts
� Application starts device
� Asks for an interrupt upon completion
� OS blocks application
� Device controller generates interrupt

Copyright ©: University of Illinois CS 241 Staff 31

I/O Interrupt Mechanism

1. Application writes into device registers, Controller starts device
2. When done, device controller signals interrupt controller
3. Interrupt controller asserts pin on CPU
4. Interrupt controller puts I/O device number on bus to CPU

Copyright ©: University of Illinois CS 241 Staff 32

(a) (b)

Operating System Concepts

� Process
� An executable instance

of a program
� Only one process can

A Z

use the CPU at a time

Copyright ©: University of Illinois CS 241 Staff 33

Operating System Concepts

� Context Switching
� Now I have N processes and M processors?
� How would you switch CPU execution from one

process to another?process to another?
� What are the costs involved?

Copyright ©: University of Illinois CS 241 Staff 34

Operating System Concepts

� Context Switching
� What are the costs involved?

Copyright ©: University of Illinois CS 241 Staff 35

Item Time Scaled Time in Human Terms
(2 billion times slower)

Processor cycle 0.5 ns (2 GHz) 1 s

Cache access 1 ns (1 GHz) 2 s

Memory access 15 ns 30 s

Context switch 5,000 ns (5 micros) 167 m

Disk access 7,000,000 ns (7 ms) 162 days

System quanta 100,000,000 (100 ms) 6.3 years

Operating System Concepts

� Shared resources
� Now I have B KB of memory, but need 2B KB
� Now I have N processes trying to access the

diskdisk
� How would you control access to resources?
� What are the challenges?

Copyright ©: University of Illinois CS 241 Staff 36

Operating System Concepts

� Shared resources
� What are the challenges?

Copyright ©: University of Illinois CS 241 Staff 37

(a) A potential deadlock (b) An actual deadlock

Operating System Concepts

� Process
� An executable instance

of a program
� Only one process can

A Z

use the CPU at a time

� A process tree
� A created two child

processes, B and C
� B created three child

processes, D, E, and F

Copyright ©: University of Illinois CS 241 Staff 38

B C

E FD

Operating System Concepts

� Inter-process Communication
� Now process A needs to exchange information

with process B
How would you enable communication between � How would you enable communication between
processes?

Copyright ©: University of Illinois CS 241 Staff 39

A B
Pipe

A B

Shared Memory

Summary

� Resource Manager
� Hardware independence
� Virtual Machine Interface� Virtual Machine Interface
� POSIX
� Concurrency & Deadlock

Copyright ©: University of Illinois CS 241 Staff 40

