
C Survival Guide

Copyright ©: University of Illinois CS 241 Staff 1

Announcements

� Homework 1 posted
� Due 11am, August 31
� Submit via svn� Submit via svn

� Piazza access code: ________

� Discussion sections will be held this
week

Copyright ©: University of Illinois CS 241 Staff 2

Good news: Writing C code is
easy!

void* myfunction() {

char *p;

*p = 0;*p = 0;

return (void*) &p;

}

Copyright ©: University of Illinois CS 241 Staff 3

Bad news: Writing BAD C
code is easy!

void* myfunction() {

char *p;

*p = 0;

What is
wrong with
this code?*p = 0;

return (void*) &p;

}

Copyright ©: University of Illinois CS 241 Staff 4

this code?

How do I write good C
programs?

� Fluency in C syntax
� Stack (static) vs. Heap (dynamic)

memory allocation
Key skill: read code for bugs� Key skill: read code for bugs
� Do not rely solely on compiler warnings, if

any, and testing

� Key skill: debugging
� Learn to use a debugger. Don’t only rely on

printf s!

Copyright ©: University of Illinois CS 241 Staff 5

Why C instead of Java?

� C helps you learn how to write large-scale
programs
� C is lower-level

� C provides more opportunities to create abstractions

� C has some flaws� C has some flaws
� C’s flaws motivate discussions of software engineering

principles

� C helps you get “under the hood”
� C facilitates language levels tour

� C is closely related to assembly language

� C facilitates services tour
� Many existing servers/systems written in C

Copyright ©: University of Illinois CS 241 Staff 6

C vs. Java: Design Goals

� Java design goals
� Support object-oriented programming
� Allow same program to run on multiple operating systems
� Support using computer networks� Support using computer networks
� Execute code from remote sources securely
� Adopt the good parts of other languages

� Implications for Java
� Good for application-level programming
� High-level (insulates from assembly language, hardware)
� Portability over efficiency
� Security over efficiency

Copyright ©: University of Illinois CS 241 Staff 7

C vs. Java: Design Goals

� C design goals
� Support structured programming
� Support development of the Unix OS and Unix tools

� As Unix became popular, so did C

� Implications for C
� Good for systems-level programming
� Low-level
� Efficiency over portability
� Efficiency over security

� Anything you can do in Java you can do in C – it
just might look ugly in C!

Copyright ©: University of Illinois CS 241 Staff 8

C vs. C++

� C++ is “C with Classes”
� C enhanced with objects

� C has some shortcomings compared to C++� C has some shortcomings compared to C++
� C++ has objects, a bigger standard library (e.g., STL),

parameterized types, etc.
� C++ is a little bit more strongly typed

� Programming Challenge
� All syntax you use in this class is valid for C++
� Not all C++ syntax you’ve used, however, is valid for C

9Copyright ©: University of Illinois CS 241 Staff

A Few Differences between C
and C++

� Input/Output
� C does not have “iostreams”
� C++: cout<<"hello world“<<endl;
� C: printf("hello world\n“);

� Heap memory allocation
� C++: new/delete

� int *x = new int[8]; delete(x);

� C: malloc()/free()
� int *x = malloc(8 * sizeof(int)); free(x);

10Copyright ©: University of Illinois CS 241 Staff

Compiler

� gcc
� Preprocessor
� Compiler
� Linker� Linker
� See manual “man” for options: man gcc

� "Ansi-C" standards C89 versus C99
� C99: Mix variable declarations and code (for int i=…)
� C++ inline comments //a comment

� make – a utility to build executables

11Copyright ©: University of Illinois CS 241 Staff

Programming in C

� C = Variables + Instructions

12Copyright ©: University of Illinois CS 241 Staff

Programming in C

� C = Variables + Instructions

int

char

13

int

float

string…

pointer

array

Copyright ©: University of Illinois CS 241 Staff

Programming in C

� C = Variables + Instructions

printf/scanf

assignment

int

char

14

…

printf/scanf

if

switch…

for

while

int

float

string

pointer

array

Copyright ©: University of Illinois CS 241 Staff 14

What we’ll show you

� You already know a lot of C from C++:
int my_fav_function(int x) {

return x+1; }return x+1; }
� Key concepts for this lecture:

� Pointers
� Memory allocation
� Arrays
� Strings

Theme:
how memory
really works

15Copyright ©: University of Illinois CS 241 Staff

Instant C in 3 slides: Pointers

� Data type that “points to” a value in memory, using its
address

� Reference operator: &
� address-of

� Dereference operator: *� Dereference operator: *
� contents-of

� Automatic variables
� Temporary and stored in the stack

� Character pointers: char* p;
� *p =0;
� contents-of p set to 0. (Kaboom!)

� Initialization
� Initialize a pointer to something before using it. (Doh!)

16Copyright ©: University of Illinois CS 241 Staff

Instant C in 3 slides: Pointers

� Data type that “points to” a value in memory, using its
address

� Reference operator: &
� address-of

� Dereference operator: *
int x=4;
int *y = &x;� Dereference operator: *

� contents-of

� Automatic variables
� Temporary and stored in the stack

� Character pointers: char* p;
� *p =0;
� contents-of p set to 0. (Kaboom!)

� Initialization
� Initialize a pointer to something before using it. (Doh!)

17Copyright ©: University of Illinois CS 241 Staff

int *y = &x;

Question: What is the
value of y?

Instant C in 3 slides: Pointers

� Data type that “points to” a value in memory, using its
address

� Reference operator: &
� address-of

� Dereference operator: *

int x=4;
int *y = &x;� Dereference operator: *

� contents-of

� Automatic variables
� Temporary and stored in the stack

� Character pointers: char* p;
� *p =0;
� contents-of p set to 0. (Kaboom!)

� Initialization
� Initialize a pointer to something before using it. (Doh!)

18Copyright ©: University of Illinois CS 241 Staff

int *y = &x;
int a = *y;
int b = y;

Question: What are the
values of a and b?

Instant C in 3 slides: Pointers

� Data type that “points to” a value in memory, using its
address

� Reference operator: &
� address-of

� Dereference operator: *

void main() {
func();

}� Dereference operator: *
� contents-of

� Automatic variables
� Temporary and stored in the stack

� Character pointers: char* p;
� *p =0;
� contents-of p set to 0. (Kaboom!)

� Initialization
� Initialize a pointer to something before using it. (Doh!)

19Copyright ©: University of Illinois CS 241 Staff

}

void* func() {
int x=3;

}

Question: What
happens to x after
func() returns?

Instant C in 3 slides: Pointers

� Data type that “points to” a value in memory, using its
address

� Reference operator: &
� address-of

� Dereference operator: * void* func() {
int * w;

� Dereference operator: *
� contents-of

� Automatic variables
� Temporary and stored in the stack

� Character pointers: char* p;
� *p =0;
� contents-of p set to 0. (Kaboom!)

� Initialization
� Initialize a pointer to something before using it. (Doh!)

20Copyright ©: University of Illinois CS 241 Staff

int * w;
*w = 0

}

Question: What does
this code output?

Instant C #2: Strings

� Unlike C++ and Java, C does not have a
native string type
� Instead, use arrays of characters terminated

with a null bytewith a null byte

� Functions
� strcpy("hello", "world") will crash
� strcmp(s1,s2) returns 0 if s1==s2

� Arguments
� argv[0] is the name of the executable
� argv[argc] is a null pointer

21Copyright ©: University of Illinois CS 241 Staff

Instant C #3: Dynamic
Memory Allocation

� Allocation
� malloc(bytes) to reserve memory

� Clean up
� free(ptr) to free up memory� free(ptr) to free up memory

� Dynamically allocated memory is stored on the
“heap”
� Static variables are stored on the “stack”
� You often use static variables (pointers) to refer to and

manipulate heap memory
� e.g., char* c = malloc(sizeof(char))

22Copyright ©: University of Illinois CS 241 Staff

Common Causes of 'Death'

1. Uninitialized pointers
char *dest;
strcpy(dest,"hello");

2. C Strings need a null byte at the end
3. Buffer overflow
4. Un-initialized memory
5. Too confident: not checking return values
6. Misuse of static vs. stack variables.

23Copyright ©: University of Illinois CS 241 Staff

Pointers

Copyright ©: University of Illinois CS 241 Staff 24

Variables

10,000

10,002

Value1x

y

Name

int x;

Type of each variable
(also determines size)

10,008

10,010

10,012

…

Value2

Value3

Value4

Value5

y

z

p

d

Memory
Address Value

int x;
double y;
float z;
double* p;
int d;

25Copyright ©: University of Illinois CS 241 Staff

The “&” Operator:
Reads “Address of”

10,000

10,002

Value1x

y

Name

&y

10,008

10,010

10,012

…

Value2

Value3

Value4

Value5

y

z

p

d

Value

26Copyright ©: University of Illinois CS 241 Staff

Pointers

10,000

10,002

Value1x

y

Name
A pointer is a variable
whose value is the
address of another

10,008

10,010

10,012

…

Value2

Value3

10,002

Value5

y

z

p

d

Value

Copyright ©: University of Illinois CS 241 Staff 27

The “*” Operator
Reads “Variable pointed to by”

10,000

10,002

Value1x

y

Name
A pointer is a variable
whose value is the
address of another

*p

10,008

10,010

10,012

…

Value2

Value3

10,002

Value5

y

z

p

d

Value

*p

Copyright ©: University of Illinois CS 241 Staff 28

What is the Output?

main() {
int *p, q, x;
x=10;x=10;
p=&x;
*p=x+1;
q=x;
printf (“Q = %d\n“, q);

}

Copyright ©: University of Illinois CS 241 Staff 29

What is the Output?

main() {
int *p, q, x;
x=10;

#@*%!

#@%$!

p

qx=10;
p=&x;
*p=x+1;
q=x;
printf (“Q = %d\n“, q);

}

#@%$!

@*%^x

Copyright ©: University of Illinois CS 241 Staff 30

What is the Output?

main() {
int *p, q, x;
x=10;

#@*%!

#@%$!

p

qx=10;
p=&x;
*p=x+1;
q=x;
printf (“Q = %d\n“, q);

}

#@%$!

10x

Copyright ©: University of Illinois CS 241 Staff 31

What is the Output?

main() {
int *p, q, x;
x=10; #@%$!

p

qx=10;
p=&x;
*p=x+1;
q=x;
printf (“Q = %d\n“, q);

}

#@%$!

10x

Copyright ©: University of Illinois CS 241 Staff 32

What is the Output?

main() {
int *p, q, x;
x=10; #@%$!

p

qx=10;
p=&x;
*p=x+1;
q=x;
printf (“Q = %d\n“, q);

}

#@%$!

11x

Copyright ©: University of Illinois CS 241 Staff 33

What is the Output?

main() {
int *p, q, x;
x=10; 11

p

qx=10;
p=&x;
*p=x+1;
q=x;
printf (“Q = %d\n“, q);

}

11

11x

Copyright ©: University of Illinois CS 241 Staff 34

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

GOOD or BAD?

Copyright ©: University of Illinois CS 241 Staff 35

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

BAD!

#@*%!p
??

Pointing somewhere
random

Copyright ©: University of Illinois CS 241 Staff 36

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

#@*%!p

write to
address: #@*%!

10

Copyright ©: University of Illinois CS 241 Staff 37

Memory allocation

Copyright ©: University of Illinois CS 241 Staff 38

Memory allocation

� Two ways to dynamically allocate
memory

� Stack
� Named variables in functions� Named variables in functions

� Allocated for you when you call a function
� Deallocated for you when function returns

� Heap
� Memory on demand

� You are responsible for all allocation and
deallocation

Copyright ©: University of Illinois CS 241 Staff 39

Allocating and deallocating
heap memory

� Dynamically allocating memory
� Programmer explicitly requests space in memory
� Space is allocated dynamically on the heap
� E.g., using “malloc” in C, “new” in Java� E.g., using “malloc” in C, “new” in Java

� Dynamically deallocating memory
� Must reclaim or recycle memory that is never used again
� To avoid (eventually) running out of memory

� “Garbage”
� Allocated blocks in heap that will not be used again
� Can be reclaimed for later use by the program

Copyright ©: University of Illinois CS 241 Staff 40

Option #1: Garbage Collection

� Run-time system does garbage collection (Java)
� Automatically determines which objects can’t be accessed
� And then reclaims the resources used by these objects

Object x = new Foo() ;

Copyright ©: University of Illinois CS 241 Staff 41

Object x = new Foo() ;
Object y = new Bar() ;
x = new Quux() ;

if (x.check_something()) {
x.do_something(y) ;

}

System.exit(0) ;

Object Foo()
is never
used again!

Challenges of Garbage
Collection
� Detecting the garbage is not always easy

� long char z = x ;

� x = new Quux();

� Run-time system cannot collect all the garbage

� Detecting the garbage introduces overhead� Detecting the garbage introduces overhead
� Keeping track of references to object (e.g., counters)
� Scanning through accessible objects to identify garbage
� Sometimes walking through a large amount of memory

� Cleaning the garbage leads to bursty delays
� E.g., periodic scans of the objects to hunt for garbage
� Leads to unpredictable “freezes” of the running program
� Very problematic for real-time applications

� … though good run-time systems avoid long freezes
42

Option #2: Manual
Deallocation

� Programmer deallocates the memory (C and C++)
� Manually determines which objects can’t be accessed
� And then explicitly returns those resources to the heap
� E.g., using “free” in C or “delete” in C++

� Advantages
� Lower overhead
� No unexpected “pauses”
� More efficient use of memory

� Disadvantages
� More complex for the programmer
� Subtle memory-related bugs
� Can lead to security vulnerabilities in code

43

Manual deallocation can lead
to bugs

� Dangling pointers
� Programmer frees a region of memory
� … but still has a pointer to it
� Dereferencing pointer reads or writes nonsense values� Dereferencing pointer reads or writes nonsense values

Copyright ©: University of Illinois CS 241 Staff 44

int main(void) {
char *p;
p = malloc(10);
…
free(p);
…
printf(“%c\n”,*p);

}

May print
nonsense
character

Manual deallocation can lead
to bugs

� Memory leak
� Programmer neglects to free unused region of memory
� So, the space can never be allocated again
� Eventually may consume all of the available memory� Eventually may consume all of the available memory

Copyright ©: University of Illinois CS 241 Staff 45

void f(void) {
char *s;
s = malloc(50);

}

int main(void) {
while (1) f();

}

Eventually,
malloc()
returns
NULL

Manual deallocation can lead
to bugs

� Double free
� Programmer mistakenly frees a region more than once
� Leading to corruption of the heap data structure
� … or premature destruction of a different object� … or premature destruction of a different object

Copyright ©: University of Illinois CS 241 Staff 46

int main(void) {
char *p, *q;
p = malloc(10);
…
free(p)
q = malloc(10);
free(p)

}

Might free
space
allocated by
q!

Heap memory allocation

� C++:
� new and delete allocate memory for a

whole object

� C:
� malloc and free deal with unstructured

blocks of bytes

void* malloc(size_t size);
void free(void* ptr);

47Copyright ©: University of Illinois CS 241 Staff

Example

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

Cast to the
right type

How many bytes
do you want?

Copyright ©: University of Illinois CS 241 Staff 48

I’m hungry. More bytes plz.

int* p = (int*) malloc(10 * sizeof(int));

� Now I have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

49Copyright ©: University of Illinois CS 241 Staff

Arrays

� Contiguous block of memory
� Fits one or more elements of some type

� Two ways to allocate Is there a � Two ways to allocate
� named variable
int x[10];

� dynamic
int* x = (int*) malloc(10*sizeof(int));

Copyright ©: University of Illinois CS 241 Staff 50

One is on the
stack, one is on

the heap

Is there a
difference?

Arrays

int p[5];

p[0]

p

p[0]

p[1]

p[2]

p[3]

p[4]

Name of array (is a pointer)

Shorthand:
*(p+1) is called p[1]
*(p+2) is called p[2]
etc..

Copyright ©: University of Illinois CS 241 Staff 51

Example

int y[4];
y[1]=6;
y[2]=2; y[0]

y

y[2]=2;
6
2

y[0]

y[1]

y[2]

y[3]

Copyright ©: University of Illinois CS 241 Staff 52

Array Name as Pointer

� What’s the difference between the examples?

� Example 1: � Example 2:

int z[8];
int *q;
q=z;

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 53

Array Name as Pointer

� What’s the difference between the examples?

� Example 1: � Example 2:

int z[8];
int *q;
q=z;

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 54

NOTHING!!

z (the array name) is a pointer
to the beginning of the array,
which is &z[0]

Questions

� What’s the difference between
int* q;
int q[5];int q[5];

� What’s wrong with
int ptr[2];
ptr[1] = 1;
ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 55

Questions

� What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;
b[0] b[1] b[2]

q

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

Copyright ©: University of Illinois CS 241 Staff 56

Questions

� What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;
b[0] b[1] b[2]

q

*(q+1)

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

Copyright ©: University of Illinois CS 241 Staff 57

Questions

� What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;
b[0] b[1] b[2]

b*

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

48 2 48

Copyright ©: University of Illinois CS 241 Staff 58

Questions

� What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;
b[0] b[1] b[2]

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

48 2 50

48 2 48

Copyright ©: University of Illinois CS 241 Staff 59

Questions

� What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

48 2 50

48 2 48

Copyright ©: University of Illinois CS 241 Staff 60

Strings

Copyright ©: University of Illinois CS 241 Staff 61

Strings
(Null-terminated Arrays of Char)

� Strings are arrays that contain the
string characters followed by a “Null”
character ‘\0’ to indicate end of string.character ‘\0’ to indicate end of string.
� Do not forget to leave room for the null

character

� Example
� char s[5];

s[0]

s[1]

s[2]

s[3]

s[4]

s

Copyright ©: University of Illinois CS 241 Staff 62

Conventions

� Strings
� “string”
� “c”� “c”

� Characters
� ‘c’
� ‘X’

Copyright ©: University of Illinois CS 241 Staff 63

String Operations

� strcpy
� strlen
� strcat� strcat
� strcmp

Copyright ©: University of Illinois CS 241 Staff 64

strcpy, strlen

� strcpy(ptr1, ptr2);
� ptr1 and ptr2 are

pointers to char

� value = strlen(ptr);

int len;
char str[15];
strcpy (str, "Hello, world!");
len = strlen(str); � value = strlen(ptr);

� value is an integer
� ptr is a pointer to char

len = strlen(str);

Copyright ©: University of Illinois CS 241 Staff 65

strcpy, strlen

� What’s wrong with

char str[5];
strcpy (str, "Hello");

Copyright ©: University of Illinois CS 241 Staff 66

strncpy

� strncpy(ptr1, ptr2,
num);
� ptr1 and ptr2 are

pointers to char

int len;
char str1[15], str2[15];
strcpy (str1, "Hello,

world!");
� num is the number of

characters to be
copied

world!");
strncpy (str2, str1, 5);

Copyright ©: University of Illinois CS 241 Staff 67

strncpy

� strncpy(ptr1, ptr2,
num);
� ptr1 and ptr2 are

pointers to char

int len;
char str1[15], str2[15];
strcpy (str1, "Hello,

world!");
� num is the number of

characters to be
copied

world!");
strncpy (str2, str1, 5);

Caution: strncpy blindly copies the
characters. It does not voluntarily
append the string-terminating null
character.

Copyright ©: University of Illinois CS 241 Staff 68

strcat

� strcat(ptr1, ptr2);
� ptr1 and ptr2 are pointers to char

� Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).

char S[25] = "world!";
char D[25] = "Hello, ";
strcat(D, S);

Copyright ©: University of Illinois CS 241 Staff 69

strcat

� strcat(ptr1, ptr2);
� ptr1 and ptr2 are pointers to char

� Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).
� Find the end of the destination string
� Append the source string to the end of the destination

string
� Add a NULL to new destination string

Copyright ©: University of Illinois CS 241 Staff 70

strcat Example

� What’s wrong with

char S[25] = "world!"; char S[25] = "world!";
strcat(“Hello, ”, S);

Copyright ©: University of Illinois CS 241 Staff 71

strcat Example

� What’s wrong with

char *s = malloc(11 * sizeof(char));
/* Allocate enough memory for an/* Allocate enough memory for an

array of 11 characters, enough
to store a 10-char long string. */

strcat(s, "Hello");
strcat(s, "World");

Copyright ©: University of Illinois CS 241 Staff 72

strcat

� strcat(ptr1, ptr2);
� ptr1 and ptr2 are pointers to char

� Compare to Java and C++� Compare to Java and C++
� string s = s + " World!";

� What would you get in C?
� If you did char* ptr0 = ptr1+ptr2;
� You would get the sum of two memory locations!

Copyright ©: University of Illinois CS 241 Staff 73

strcmp

� diff = strcmp(ptr1, ptr2);
� diff is an integer
� ptr1 and ptr2 are pointers to char

� Returns
� zero if strings are identical � zero if strings are identical
� < 0 if ptr1 is less than ptr2 (earlier in a dictionary)
� > 0 if ptr1 is greater than ptr2 (later in a dictionary)

int diff;
char s1[25] = "pat";
char s2[25] = "pet";
diff = strcmp(s1, s2);

Copyright ©: University of Illinois CS 241 Staff 74

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff 75

Can we make this work?!

int x;

printf("This class is %s.\n",);

Copyright ©: University of Illinois CS 241 Staff 76

Can we make this work?!

int x;

(char*)&x

printf("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff 77

Can we make this work?!

int x;

((char*)&x)[0] = 'f';

printf("This class is %s.\n", &x);

78Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

((char*)&x)[0] = 'f';
((char*)&x)[1] = 'u';

printf("This class is %s.\n", &x);

((char*)&x)[1] = 'u';
((char*)&x)[2] = 'n';

79Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

((char*)&x)[0] = 'f';
((char*)&x)[1] = 'u';

Perfectly legal
and perfectly

printf("This class is %s.\n", &x);

((char*)&x)[1] = 'u';
((char*)&x)[2] = 'n';
((char*)&x)[3] = '\0';

and perfectly
horrible!

80Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

char* s = &x;
strcpy(s, “fun”);

Perfectly legal
and perfectly

printf("This class is %s.\n", &x);

strcpy(s, “fun”);

81Copyright ©: University of Illinois CS 241 Staff

and perfectly
horrible!

Other operations

Copyright ©: University of Illinois CS 241 Staff 82

Increment & decrement

� x++: yield old value, add one
� ++x: add one, yield new value

� --x and x-- are similar (subtract one)

int x = 10;

x++;

int y = x++;

int z = ++x;

11

13

83Copyright ©: University of Illinois CS 241 Staff

Math: Increment and
Decrement Operators

� Example 1:
int x, y, z, w;
y=10; w=2;
x=++y;

� Example 2:
int x, y, z, w;
y=10; w=2;
x=y++; What are x

x=++y;
z=--w;

x=y++;
z=w--;

Copyright ©: University of Illinois CS 241 Staff 84

What are x
and y at the
end of each
example?

Math: Increment and
Decrement Operators

� Example 1:
int x, y, z, w;
y=10; w=2;
x=++y;

� Example 2:
int x, y, z, w;
y=10; w=2;
x=y++;x=++y;

z=--w;

� First increment/
decrement, then
assign result

� x is 11, z is 1

x=y++;
z=w--;

� First assign result, then
increment/ decrement

� x is 10, z is 2

Copyright ©: University of Illinois CS 241 Staff 85

Math: Increment and Decrement
Operators on Pointers

� Example 1:

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10; a[0]=1; a[1]=10;
p=a;
number1 = *p++;
number2 = *p;

� What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 86

Math: Increment and Decrement
Operators on Pointers

� Example

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10; a[0]=1; a[1]=10;
p=a;
number1 = *p++;
number2 = *p;

� What will number1 and number2 be at the end?

Hint: ++ increments pointer p not
variable *p

Copyright ©: University of Illinois CS 241 Staff 87

Logic: Relational (Condition)
Operators

== equal to
!= not equal to
> greater than > greater than
< less than
>= greater than or equal to
<= less than or equal to

Copyright ©: University of Illinois CS 241 Staff 88

Logic Example

if (a == b)
printf (“Equal.”);

else
printf (“Not Equal.”);

� Question: what will happen if I replaced the above with:
if (a = b)

printf (“Equal.”);
else

printf (“Not Equal.”);

Perfectly LEGAL C statement!
(syntactically speaking)
It copies the value in b into a. The
statement will be interpreted as
TRUE if b is non-zero.

Copyright ©: University of Illinois CS 241 Staff 89

Review

Copyright ©: University of Illinois CS 241 Staff 90

Review

� int p1;
What does &p1 mean?

91Copyright ©: University of Illinois CS 241 Staff

Review

� How much is y at the end?

int y, x, *p;int y, x, *p;

x = 20;
*p = 10;
y = x + *p;

92Copyright ©: University of Illinois CS 241 Staff

Review

� How much is y at the end?

int y, x, *p;int y, x, *p;

x = 20;
*p = 10;
y = x + *p;

BAD!!
Dereferencing an uninitialized
pointer will likely segfault or
overwrite something!

Segfault = unauthorized memory
access

Copyright ©: University of Illinois CS 241 Staff 93

Review

� What are the differences between x
and y?
char* f() { char* f() {
char *x;
static char*y;
return y;

}

Copyright ©: University of Illinois CS 241 Staff 94

Review: Debugging

if(strcmp("a","a"))
printf("same!");

Copyright ©: University of Illinois CS 241 Staff 95

Review: Debugging

int i = 4;
int *iptr;
iptr = &i;iptr = &i;
*iptr = 5;//now i=5

Copyright ©: University of Illinois CS 241 Staff 96

Review: Debugging

char *p;
p=(char*)malloc(99);
strcpy("Hello",p);strcpy("Hello",p);
printf("%s World",p);
free(p);

Copyright ©: University of Illinois CS 241 Staff 97

Review: Debugging

char msg[5];
strcpy (msg,"Hello");

Copyright ©: University of Illinois CS 241 Staff 98

Operator Description Associativity

()
[]
.

->
++ --

Parentheses (function call)
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement

left-to-right

++ --
+ -
! ~

(type)
*
&

sizeof

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise complement
Cast (change type)
Dereference
Address
Determine size in bytes

right-to-left

* / % Multiplication/division/modulus left-to-right

+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right

< <= Relational less than/less than or equal to left-to-right< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

|| Logical OR left-to-right

?: Ternary conditional right-to-left

=
+= -=
*= /=

%= &=
^= |=

<<= >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

right-to-left

, Comma (separate expressions) left-to-right

