
CS 241 Section Week #6

(09/29/11)

MP #4

MP4 Forward

In MP4, you will add code to a simulator for a CPU

scheduler.

 We provide you with the code for the simulator.

 You don’t need to understand this code to understand this MP.

 You should consider the simulator a ‘black box’

 You need to implement these algorithms:

 fcfs: First Come First Serve

 pri: Priority Scheduling

 ppri: Preemptive Priority Scheduling

 sjf: Shortest Job First

 psjf: Preemtive Shortest Job First (by Remaining Time)

 rr#: Round Robin

MP4 Forward

 Every modern scheduler uses a priority queue to

prioritize what task to run next.

 [Part 1] requires you to implement a priority queue

library, libpriqueue.

MP4 Forward

 libpriqueue contains nine required functions:

 State-related functions:

 priqueue_init(), priqueue_destroy()

 priqueue_size()

 Adding and removing elements:

 priqueue_offer()

 priqueue_remove(), priqueue_remove_at()

 Accessing elements:

 priqueue_peek(), priqueue_poll()

 priqueue_at()

MP4 Forward

 The priqueue_init() function takes in a comparer

function:

 void priqueue_init(

 priqueue_t *q,

 int(*comparer)(const void *, const void *)

)

 This comprarer function is the same function as qsort().

 Compares two elements, returns the an int if one element is

less than, equal to, or greater than the other element.

 We’ll look into programming this later.

MP4 Forward

 You now have a priority queue that can prioritize

elements based on any function you program.

 Now, it should be simple to implement a scheduler. In

[Part 2], you’ll implement a second library: libscheduler.

MP4 Forward

 You need to fill in 3 scheduling functions:

 scheduler_new_job()

 scheduler_job_finished()

 scheduler_quantum_expired()

Note that these are the only times that the scheduler needs to

make a decision!

 The scheduler_start_up() and scheduler_clean_up()

functions are provided to allow you to initialize your

scheduler and clean up any memory used.

MP4 Forward

 You also need to fill in 3 statistics functions:

 float scheduler_average_response_time()

 float scheduler_average_wait_time()

 float scheduler_average_turnaround_time()

These are called at the end of the simulation.

 We also provide one function debug-related function:

scheduler_show_queue().

 After every call our simulator makes, we’ll call this function

and you can print out any debugging information you want.

MP4 Forward

 For success on this MP:

 We provide queuetest.c, a program to help you test [Part 1]

independent of [Part 2].

 We provide 54 example output files and a program,

examples.pl, to run all 54 examples at once and report any

errors.

 Requires a good understanding of data structures,

scheduling, and pointers all in one MP.

Good luck!

MP4: Relating Back to Lecture…

12

5-State Model - Transitions

Lets Go Programming...

Programming

 Question:

 What are some things we can do on a char-by-char basis to a

string?

 Ex: Make lowercase letters uppercase.

 c  C

Programming

 Question:

 What are some things we can do on a char-by-char basis to a

string?

 Ex: Make lowercase letters uppercase.

 c  C

 Goal:

 Create a program that allows us to manipulate strings in all

the different ways you described above.

 …all using one single function with different parameters.

Programming

 Naïve Solution:

 void mainp(char *s, int what_to_do)

{

 if (i == 0)

 upper_case(s);

 else if (i == 1)

 lower_case(s);

 else if (…)

}

 What’s wrong with that?

Programming

 Lets do better….

 File: ds/ds5/1.c

