
CS 241 Section Week #6

(09/29/11)

MP #4

MP4 Forward

In MP4, you will add code to a simulator for a CPU

scheduler.

 We provide you with the code for the simulator.

 You don’t need to understand this code to understand this MP.

 You should consider the simulator a ‘black box’

 You need to implement these algorithms:

 fcfs: First Come First Serve

 pri: Priority Scheduling

 ppri: Preemptive Priority Scheduling

 sjf: Shortest Job First

 psjf: Preemtive Shortest Job First (by Remaining Time)

 rr#: Round Robin

MP4 Forward

 Every modern scheduler uses a priority queue to

prioritize what task to run next.

 [Part 1] requires you to implement a priority queue

library, libpriqueue.

MP4 Forward

 libpriqueue contains nine required functions:

 State-related functions:

 priqueue_init(), priqueue_destroy()

 priqueue_size()

 Adding and removing elements:

 priqueue_offer()

 priqueue_remove(), priqueue_remove_at()

 Accessing elements:

 priqueue_peek(), priqueue_poll()

 priqueue_at()

MP4 Forward

 The priqueue_init() function takes in a comparer

function:

 void priqueue_init(

 priqueue_t *q,

 int(*comparer)(const void *, const void *)

)

 This comprarer function is the same function as qsort().

 Compares two elements, returns the an int if one element is

less than, equal to, or greater than the other element.

 We’ll look into programming this later.

MP4 Forward

 You now have a priority queue that can prioritize

elements based on any function you program.

 Now, it should be simple to implement a scheduler. In

[Part 2], you’ll implement a second library: libscheduler.

MP4 Forward

 You need to fill in 3 scheduling functions:

 scheduler_new_job()

 scheduler_job_finished()

 scheduler_quantum_expired()

Note that these are the only times that the scheduler needs to

make a decision!

 The scheduler_start_up() and scheduler_clean_up()

functions are provided to allow you to initialize your

scheduler and clean up any memory used.

MP4 Forward

 You also need to fill in 3 statistics functions:

 float scheduler_average_response_time()

 float scheduler_average_wait_time()

 float scheduler_average_turnaround_time()

These are called at the end of the simulation.

 We also provide one function debug-related function:

scheduler_show_queue().

 After every call our simulator makes, we’ll call this function

and you can print out any debugging information you want.

MP4 Forward

 For success on this MP:

 We provide queuetest.c, a program to help you test [Part 1]

independent of [Part 2].

 We provide 54 example output files and a program,

examples.pl, to run all 54 examples at once and report any

errors.

 Requires a good understanding of data structures,

scheduling, and pointers all in one MP.

Good luck!

MP4: Relating Back to Lecture…

12

5-State Model - Transitions

Lets Go Programming...

Programming

 Question:

 What are some things we can do on a char-by-char basis to a

string?

 Ex: Make lowercase letters uppercase.

 c C

Programming

 Question:

 What are some things we can do on a char-by-char basis to a

string?

 Ex: Make lowercase letters uppercase.

 c C

 Goal:

 Create a program that allows us to manipulate strings in all

the different ways you described above.

 …all using one single function with different parameters.

Programming

 Naïve Solution:

 void mainp(char *s, int what_to_do)

{

 if (i == 0)

 upper_case(s);

 else if (i == 1)

 lower_case(s);

 else if (…)

}

 What’s wrong with that?

Programming

 Lets do better….

 File: ds/ds5/1.c

