
CS 241
Section Week #5

9/22/11

2

Topics This Section

• File I/O

• Advanced C

POP QUIZ!

POP QUIZ! (not really)

• What is type definition for this function:

– int *foo(const int* input, char *msg)

• T/F When a thread is finished it should call
exit.

• What is the one exception to grading where
you can leak memory? (Case and amount)

• T/F Robin was wearing green in lecture
yesterday.

POP QUIZ! (not really)

• What is type definition for this function:

– int *foo(const int* input, char *msg)

int *(*)(const int*, char*)

POP QUIZ! (not really)

• What is type definition for this function:

– int *foo(const int* input, char *msg)

• T/F When a thread is finished it should call
exit.

False. It should call pthread_exit or simply
return.

POP QUIZ! (not really)

• What is type definition for this function:

– int *foo(const int* input, char *msg)

• T/F When a thread is finished it should call
exit.

• What is the one exception to grading where
you can leak memory? (Case and amount)

If you call pthread_exit(); 5 blocks.

POP QUIZ! (not really)

• What is type definition for this function:
– int *foo(const int* input, char *msg)

• T/F When a thread is finished it should call exit.

• What is the one exception to grading where you
can leak memory? (Case and amount)

• T/F Robin was wearing green in lecture
yesterday.

If you missed this you haven’t been keeping up on
lectures

File Input/Output

File I/O in C
MP2 requires you to read and write text files in C.

Two primary means of doing I/O in C:

 Through lightly-wrapped system calls

open(), close(), read(), write(), etc

 Through C-language standards

fopen(), fclose(), fread(), fwrite(), etc

File I/O in C
Opening a file (Method #1):

fopen(const char *filename, const char *mode);

filename: path to file to open
mode: what do you wish to do with the file?

r: read only
r+: read and write (file must already exist)

w: write (or overwrite) a file
w+: write (or overwrite) a file and allow for reading

a: append to the end of the file (works for new files, too)
a+: appends to end of file and allows for reading anywhere in the
file; however, writing will always occur as an append

File I/O in C
Opening a file (Method #2):
open(const char *filename, int flags, int mode);

filename: path to file to open

flags: what do you wish to do with the file?

One of the following is required:
O_RDONLY, O_WRONLY, O_RDWR

And any number of these flags (yo “add” these flags, simply

binary-OR them together):
O_APPEND: Similar to “a+” in fopen()

O_CREAT: Allows creation of a file if it doesn’t exist

O_SYNC: Allows for synchronous I/O (thread-safeness)

mode: what permissions should the new file have?

(S_IRUSR | S_IWUSR) creates a user read-write file.

Opening Files in C
Return value of opening a file:

Having called open() or fopen(), they will both create
an entry in the OS’s file descriptor table.

Specifics of a file descriptor table will be covered in-depth in the
second-half of CS 241.

Both open() and fopen() returns information about
its file descriptor:
open(): Returns an int.

fopen(): Returns a (FILE *).

Reading Files in C
Two ways to read files in C:
fread(void *ptr, size_t size, size_t count, FILE *s);

*ptr: Where should the data be read into?

size: What is the size of each piece of data?

count: How many pieces?

*s: What (FILE *) do we read from?

read(int fd, void *buf, size_t count);

fd: What file do we read from?

*buf: Where should the data be read into?

count: How many bytes should be read?

Reading Files in C
Reading more advancely…
fscanf(FILE *stream, const char *format, …);

Allows for reading at a semantic-level (eg: ints, doubles, etc) rather than a
byte-level.The format string (*format) is of the same format as printf().

fgets(char *s, int size, FILE *stream);

reads in at most size -1 characters from stream and stores them into
the buffer pointed to by s. Reading stops after an EOF or a newline. If a
newline is read, it is stored into the buffer. A '\0’ is stored after the last
character in the buffer.

Writing Files in C
Writing is a lot like reading…

fwrite(void *ptr, size_t size, size_t count, FILE *s);

Writing of bytes with (FILE *).

write(int fd, void *buf, size_t count);

Writing of bytes with a file descriptor (int)

fprintf(FILE *stream, const char *format, …);

Formatted writing to files (works like printf())

Closing Files in C

Always close your files!

fclose(FILE *stream);

close(int fd);

write(), and especially fwrite()/fprintf(), may be buffered before being
written out to disk.

If a file is never closed after writing:

•the new data may never be written on the actual file;

•the files may be corrupted.

Advanced C

19

Playing with Structs

How do we reduce the size of the struct?

typedef struct _name_t{

 int size;

 int bool;

} name_t;

20

Playing with Structs

How do we initialize the struct in one line?

typedef struct _name_t{

 int size:31; //31 bits

 int bool:1; //1 bit

} name_t;

21

Playing with Structs

How do we initialize only bool?

typedef struct _name_t{

 int size:31; //31 bits

 int bool:1; //1 bit

} name_t;

name_t var = {0, 1}; //size = 0, bool = 1

22

Playing with Structs

How do we initialize only bool?

typedef struct _name_t{

 int size:31; //31 bits

 int bool:1; //1 bit

} name_t;

name_t var = {.bool=1};

