
CS 241 Discussion Section

(12/1/2011)

Tradeoffs

• When do you:

– Expand

• Increase total memory usage

– Split– Split

• Make smaller chunks (avoid internal fragmentation)

– Coalesce

• Make bigger chunks (avoid external fragmentation)

Basic Allocator Mechanisms

• Sequential fits (implicit or explicit single free

list)

–best fit, first fit, or next fit placement

•Tradeoffs•Tradeoffs

–Expand: No fit

–Split: Threshold

–Coalesce: Immediate or Deferred

Basic allocator mechanisms

• Segregated free lists

–simple segregated storage -- separate heap for
each size class

–segregated fits -- separate linked list for each size
classclass

•Tradeoffs

–Expand: No big blocks

–Split: No “right” sized blocks

–Coalesce: Immediate or Deferred

Segregate Storage

• Each size “class” has its own collection of blocks

1-2

3

4

5-8

9-16

• Often have separate collection for every small size (2,3,4,…) FAST

• For larger sizes typically have a collection for each power of 2 EFFICIENT

Simple segregated storage

• Separate heap and free list for each size class

• No splitting

• To allocate a block of size n:
– if free list for size n is not empty,

• allocate first block on list (note, list can be implicit or explicit)

– if free list is empty,
• get a new page • get a new page

• create new free list from all blocks in page

• allocate first block on list

– constant time

• To free a block:
– Add to free list

– If page is empty, return the page for use by another size (optional)

• Tradeoffs:
– fast, but can fragment badly

Segregated fits

• Array of free lists, each one for some size class

• To allocate a block of size n:
– search appropriate free list for block of size m > n

– if an appropriate block is found:
• split block and place fragment on appropriate list (optional)

– if no block is found, try next larger class

– repeat until block is found– repeat until block is found

• To free a block:
– coalesce and place on appropriate list (optional)

• Tradeoffs
– faster search than sequential fits (i.e., log time for power of two size classes)

– controls fragmentation of simple segregated storage

– coalescing can increase search times
• deferred coalescing can help

Buddy systems

• Special case of segregated fits.
– all blocks are power of two sizes

• Basic idea:
– Heap is 2m words

– Maintain separate free lists of each size 2k, 0 <= k <= m.

– Requested block sizes are rounded up to nearest power of 2.

– Originally, one free block of size 2m.– Originally, one free block of size 2m.

Buddy systems (cont)

• To allocate a block of size 2k:
– Find first available block of size 2j s.t. k <= j <= m.

– if j == k then done.

– otherwise recursively split block until j == k.

– Each remaining half is called a “buddy” and is placed on the appropriate free list

2m2

buddy

buddy

buddy

Buddy systems (cont)
• To free a block of size 2k

– continue coalescing with buddies while the buddies are free

buddy

buddy

Block to free

buddy

buddy

Not free, done

Added to appropriate free list

Buddy systems (cont)

• Key fact about buddy systems:
– given the address and size of a block, it is easy to compute the address

of its buddy

– e.g., block of size 32 with address xxx...x00000 has buddy
xxx...x10000

• Tradeoffs:
– fast search and coalesce

– subject to internal fragmentation– subject to internal fragmentation

Internal fragmentation

• Internal fragmentation is wasted space inside

allocated blocks:

– minimum block size larger than requested amount

• e.g., due to minimum free block size, free list overhead

– policy decision not to split blocks

• e.g., buddy system

• Much easier to define and measure than external

fragmentation.

Other Sources of Wisdom

• Many implementations and algorithms

online…

• All work should be your own!• All work should be your own!

• Good Luck

