CS 241 Discussion Section
(11/17/2011)

Outline

Review of MP7

MP8 Overview

Simple Code Examples (Bad before the Good)
Theory behind MP8

MP/7 Review

- Implement proxy with cache

- Nightly autograder used command line browser wget

- Send very simple HTTP requests

GET http://www.cs.uiuc.edu/class/fall/cs241/mp/mp7.html| HTTP/1.0
User-Agent: Wget/1.12 (linux-gnu)
Accept: */*

Host: www.cs.uiuc.edu

- Failed some of the proxies that depended on specific headers, for
example: Connection: keep-alive, Proxy-Connection: keep-alive.

- If your MP works with Firefox or chrome, you will get points

https://webmail.illinois.edu/owa/redir.aspx?C=e65d1c8ef6934520b4cd0506f1f958b0&URL=http%3a%2f%2fwww.cs.uiuc.edu%2fclass%2ffa11%2fcs241%2fmp%2fsimple.html
https://webmail.illinois.edu/owa/redir.aspx?C=e65d1c8ef6934520b4cd0506f1f958b0&URL=http%3a%2f%2fwww.cs.uiuc.edu%2fclass%2ffa11%2fcs241%2fmp%2fsimple.html

MP8 Overview

- Task is simple

- Reimplement malloc(), calloc(), realloc() and free()

- A contest will be running soon

~ There will be prizes !!

system call you need to know

- void* sbrk (intptr t size)
- Increments the size of heap by size
- Returns a pointer to the newly allocated memory

TIME to CODE!

Hints for MP5

* Good ideas in book: Chapter 23 Sec 10.9

Tradeoffs

* When do you:
— Expand
* Increase total memory usage
— Split
* Make smaller chunks (avoid internal fragmentation)

— Coalesce
* Make bigger chunks (avoid external fragmentation)

Basic Allocator Mechanisms

Sequential fits (implicit or explicit single free
list)

—best fit, first fit, or next fit placement
*Tradeoffs

—Expand: No fit

—Split: Threshold

—Coalesce: Immediate or Deferred

Basic allocator mechanisms

e Segregated free lists

—simple segregated storage -- separate heap for
each size class

—segregated fits -- separate linked list for each size
class

*Tradeoffs
—Expand: No big blocks
—Split: No “right” sized blocks
—Coalesce: Immediate or Deferred

Eac

1-2

5-8

9-16

N size “c

Segregate Storage

ass” has its own collection of blocks

—p

e Often have separate collection for every small size (2,3,4,...) FAST

e For larger sizes typically have a collection for each power of 2 EFFICIENT

Simple segregated storage

Separate heap and free list for each size class
No splitting
To allocate a block of size n:

— if free list for size n is not empty,
* allocate first block on list (note, list can be implicit or explicit)

— if free list is empty,
* getanew page
* create new free list from all blocks in page
* allocate first block on list

— constant time
To free a block:

— Add to free list

— |If page is empty, return the page for use by another size (optional)
Tradeoffs:

— fast, but can fragment badly

Segregated fits

Array of free lists, each one for some size class

To allocate a block of size n:
— search appropriate free list for block of size m > n

— if an appropriate block is found:
* split block and place fragment on appropriate list (optional)

— if no block is found, try next larger class
— repeat until block is found
To free a block:
— coalesce and place on appropriate list (optional)
Tradeoffs
— faster search than sequential fits (i.e., log time for power of two size classes)
— controls fragmentation of simple segregated storage

— coalescing can increase search times
* deferred coalescing can help

Buddy systems

* Special case of segregated fits.
— all blocks are power of two sizes

* Basicidea:
— Heap is 2™ words
— Maintain separate free lists of each size 2%, 0 <= k <= m.
— Requested block sizes are rounded up to nearest power of 2.
— Originally, one free block of size 2™.

Buddy systems (cont)

To allocate a block of size 2k:
— Find first available block of size 2J s.t. k<= j<=m.
— ifj==k then done.
— otherwise recursively split block until j == k.
— Each remaining half is called a “buddy” and is placed on the appropriate free list

2m

buddy

buddy

buddy

Buddy systems (cont)

* To free a block of size 2k
— continue coalescing with buddies while the buddies are free

/ Block to free

buddy | |

| | buddy

| buddy

\ Not free, done

Added to appropriate free list

Buddy systems (cont)

* Key fact about buddy systems:

— given the address and size of a block, it is easy to compute the address
of its buddy

— e.g., block of size 32 with address xxx...x00000 has buddy
XxXx...x10000

 Tradeoffs:
— fast search and coalesce
— subject to internal fragmentation

Internal fragmentation

* Internal fragmentation is wasted space inside
allocated blocks:

— minimum block size larger than requested amount

* e.g., due to minimum free block size, free list overhead

— policy decision not to split blocks
e e.g., buddy system

* Much easier to define and measure than external
fragmentation.

Other Sources of Wisdom

* Many implementations and algorithms
online...

e All work should be your own!

* Good Luck

