
CS 241 Discussion Section
(11/17/2011)

Outline

 Review of MP7

 MP8 Overview

 Simple Code Examples (Bad before the Good)

 Theory behind MP8

MP7 Review

 Implement proxy with cache

 Nightly autograder used command line browser wget
 Send very simple HTTP requests

 GET http://www.cs.uiuc.edu/class/fa11/cs241/mp/mp7.html HTTP/1.0
User-Agent: Wget/1.12 (linux-gnu)
Accept: */*

 Host: www.cs.uiuc.edu

 Failed some of the proxies that depended on specific headers, for
example: Connection: keep-alive, Proxy-Connection: keep-alive.

 If your MP works with Firefox or chrome, you will get points

https://webmail.illinois.edu/owa/redir.aspx?C=e65d1c8ef6934520b4cd0506f1f958b0&URL=http%3a%2f%2fwww.cs.uiuc.edu%2fclass%2ffa11%2fcs241%2fmp%2fsimple.html
https://webmail.illinois.edu/owa/redir.aspx?C=e65d1c8ef6934520b4cd0506f1f958b0&URL=http%3a%2f%2fwww.cs.uiuc.edu%2fclass%2ffa11%2fcs241%2fmp%2fsimple.html

MP8 Overview

 Task is simple
 Reimplement malloc(), calloc(), realloc() and free()

 A contest will be running soon
 There will be prizes !!

system call you need to know

 void* sbrk (intptr_t size)

 Increments the size of heap by size

 Returns a pointer to the newly allocated memory

TIME to CODE!

Hints for MP5

• Good ideas in book: Chapter 23 Sec 10.9

Tradeoffs

• When do you:

– Expand

• Increase total memory usage

– Split

• Make smaller chunks (avoid internal fragmentation)

– Coalesce

• Make bigger chunks (avoid external fragmentation)

Basic Allocator Mechanisms

• Sequential fits (implicit or explicit single free
list)

–best fit, first fit, or next fit placement

•Tradeoffs

–Expand: No fit

–Split: Threshold

–Coalesce: Immediate or Deferred

Basic allocator mechanisms

• Segregated free lists
–simple segregated storage -- separate heap for
each size class

–segregated fits -- separate linked list for each size
class

•Tradeoffs
–Expand: No big blocks

–Split: No “right” sized blocks

–Coalesce: Immediate or Deferred

Segregate Storage
• Each size “class” has its own collection of blocks

1-2

3

4

5-8

9-16

• Often have separate collection for every small size (2,3,4,…) FAST

• For larger sizes typically have a collection for each power of 2 EFFICIENT

Simple segregated storage

• Separate heap and free list for each size class
• No splitting
• To allocate a block of size n:

– if free list for size n is not empty,
• allocate first block on list (note, list can be implicit or explicit)

– if free list is empty,
• get a new page
• create new free list from all blocks in page
• allocate first block on list

– constant time

• To free a block:
– Add to free list
– If page is empty, return the page for use by another size (optional)

• Tradeoffs:
– fast, but can fragment badly

Segregated fits

• Array of free lists, each one for some size class
• To allocate a block of size n:

– search appropriate free list for block of size m > n
– if an appropriate block is found:

• split block and place fragment on appropriate list (optional)

– if no block is found, try next larger class
– repeat until block is found

• To free a block:
– coalesce and place on appropriate list (optional)

• Tradeoffs
– faster search than sequential fits (i.e., log time for power of two size classes)
– controls fragmentation of simple segregated storage
– coalescing can increase search times

• deferred coalescing can help

Buddy systems

• Special case of segregated fits.
– all blocks are power of two sizes

• Basic idea:
– Heap is 2m words
– Maintain separate free lists of each size 2k, 0 <= k <= m.
– Requested block sizes are rounded up to nearest power of 2.
– Originally, one free block of size 2m.

Buddy systems (cont)

• To allocate a block of size 2k:
– Find first available block of size 2j s.t. k <= j <= m.
– if j == k then done.
– otherwise recursively split block until j == k.
– Each remaining half is called a “buddy” and is placed on the appropriate free list

2m

buddy

buddy

buddy

Buddy systems (cont)
• To free a block of size 2k

– continue coalescing with buddies while the buddies are free

buddy

buddy

Block to free

buddy

Not free, done

Added to appropriate free list

Buddy systems (cont)

• Key fact about buddy systems:
– given the address and size of a block, it is easy to compute the address

of its buddy
– e.g., block of size 32 with address xxx...x00000 has buddy

 xxx...x10000

• Tradeoffs:
– fast search and coalesce
– subject to internal fragmentation

Internal fragmentation

• Internal fragmentation is wasted space inside
allocated blocks:

– minimum block size larger than requested amount

• e.g., due to minimum free block size, free list overhead

– policy decision not to split blocks

• e.g., buddy system

• Much easier to define and measure than external
fragmentation.

Other Sources of Wisdom

• Many implementations and algorithms
online…

• All work should be your own!

• Good Luck

