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MP7 Review 

 Implement proxy with cache 

 

 Nightly autograder used command line browser wget 
 Send very simple HTTP requests 

 GET http://www.cs.uiuc.edu/class/fa11/cs241/mp/mp7.html HTTP/1.0 
User-Agent: Wget/1.12 (linux-gnu) 
Accept: */* 

      Host: www.cs.uiuc.edu 

 Failed some of the proxies that depended on specific headers, for 
example: Connection: keep-alive, Proxy-Connection: keep-alive. 

 

 If your MP works with Firefox or chrome, you will get points 

 

https://webmail.illinois.edu/owa/redir.aspx?C=e65d1c8ef6934520b4cd0506f1f958b0&URL=http%3a%2f%2fwww.cs.uiuc.edu%2fclass%2ffa11%2fcs241%2fmp%2fsimple.html
https://webmail.illinois.edu/owa/redir.aspx?C=e65d1c8ef6934520b4cd0506f1f958b0&URL=http%3a%2f%2fwww.cs.uiuc.edu%2fclass%2ffa11%2fcs241%2fmp%2fsimple.html


MP8 Overview 

 Task is simple 
 Reimplement malloc(), calloc(), realloc() and free()  

 

 

 A contest will be running soon 
 There will be prizes !! 



system call you need to know 

 void* sbrk (intptr_t  size) 

 Increments the size of heap by size 

 Returns a pointer to the newly allocated memory 



TIME to CODE! 

 



Hints for MP5 

• Good ideas in book: Chapter 23 Sec 10.9 

 



Tradeoffs 

• When do you: 

– Expand 

• Increase total memory usage 

– Split 

• Make smaller chunks (avoid internal fragmentation) 

– Coalesce 

• Make bigger chunks (avoid external fragmentation) 



Basic Allocator Mechanisms 

• Sequential fits (implicit or explicit single free 
list) 

–best fit, first fit, or next fit placement 

•Tradeoffs 

–Expand:  No fit 

–Split: Threshold 

–Coalesce: Immediate or Deferred 



Basic allocator mechanisms 

• Segregated free lists 
–simple segregated storage -- separate heap for 
each size class 

–segregated fits -- separate linked list for each size 
class 

•Tradeoffs 
–Expand: No big blocks 

–Split: No “right” sized blocks 

–Coalesce: Immediate or Deferred 



Segregate Storage 
• Each size “class” has its own collection of blocks 

1-2 

3 

4 

5-8 

9-16 

• Often have separate collection for every small size (2,3,4,…)   FAST 

• For larger sizes typically have a collection for each power of 2   EFFICIENT 



Simple segregated storage 

• Separate heap and free list for each size class 
• No splitting 
• To allocate a block of size n: 

– if free list for size n is not empty, 
• allocate first block on list (note, list can be implicit or explicit) 

– if free list is empty,  
• get a new page  
• create new free list from all blocks in page 
• allocate first block on list 

– constant time 

• To free a block: 
– Add to free list 
– If page is empty, return the page for use by another size (optional) 

• Tradeoffs: 
– fast, but can fragment badly 

 



Segregated fits 

• Array of free lists, each one for some size class 
• To allocate a block of size n: 

– search appropriate free list for block of size m > n 
– if an appropriate block is found: 

• split block and place fragment on appropriate list (optional) 

– if no block is found, try next larger class 
– repeat until block is found 

• To free a block: 
– coalesce and place on appropriate list (optional) 

• Tradeoffs 
– faster search than sequential fits (i.e., log time for power of two size classes) 
– controls fragmentation of simple segregated storage 
– coalescing can increase search times 

• deferred coalescing can help  

 



Buddy systems 

• Special case of segregated fits. 
– all blocks are power of two sizes 

• Basic idea: 
– Heap is 2m words 
– Maintain separate free lists of each size 2k, 0 <= k <= m. 
– Requested block sizes are rounded up to nearest power of 2. 
– Originally, one free block of size 2m. 



Buddy systems (cont) 

• To allocate a block of size 2k: 
– Find first available block of size 2j  s.t. k <= j <= m. 
– if j == k then done. 
– otherwise recursively split block until j == k.    
– Each remaining half is called a “buddy” and is placed on the appropriate free list 

2m 

buddy 

buddy 

buddy 



Buddy systems (cont) 
• To free a block of size 2k 

– continue coalescing with buddies while the buddies are free 

buddy 

buddy 

Block to free 

buddy 

Not free, done 

Added to appropriate free list 



Buddy systems (cont) 

• Key fact about buddy systems: 
– given the address and size of a block, it is easy to compute the address 

of its buddy 
– e.g., block of size 32 with address xxx...x00000 has buddy 

              xxx...x10000 

• Tradeoffs: 
– fast search and coalesce 
– subject to internal fragmentation 

 



Internal fragmentation 

• Internal fragmentation is wasted space inside 
allocated blocks: 

– minimum block size larger than requested amount 

• e.g., due to minimum free block size, free list overhead 

– policy decision not to split blocks 

• e.g., buddy system  

• Much easier to define and measure than external 
fragmentation. 



Other Sources of Wisdom 

• Many implementations and algorithms 
online… 

 

• All work should be your own! 

 

• Good Luck 


