
December 1, 2006 ©2006 Craig Zilles 1

Cache Coherence and Atomic Operations in Hardware

  Previously, we introduced multi-core parallelism.
—  Today we’ll look at 2 things:

1.  Cache coherence
2.  Instruction support for synchronization.

—  And some pitfalls of parallelization.
—  And solve a few mysteries.

Intel Core i7

May 6, 2009 2

The Cache Coherence Problem

—  Caches are critical to modern high-speed processors

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

1. LD u
2. LD u

5. LD u
4. LD u

3. ST u

—  Multiple copies of a block can easily get inconsistent
•  Processor writes; I/O writes

—  Processors could see different values for u after event 3

Cache Coherence Invariant

  Each block of memory is in exactly one of these 3 states:

1.   Uncached: Memory has the only copy

2.   Writable: Exactly 1 cache has the block and only that
processor can write to it.

3.   Read-only: Any number of caches can hold the block, and
their processors can read it.

December 1, 2006 ©2006 Craig Zilles 3

invariant | inˈve(ә)rēәnt |
noun Mathematics
a function, quantity, or property that remains unchanged when a specified
transformation is applied.

Snoopy Cache Coherence Schemes

  Bus is a broadcast medium & caches know what they have

  Cache controller “snoops” all transactions on the shared bus
—  Relevant transaction if for a block it contains
—  Take action to ensure coherence

•  Invalidate or supply value
Depends on state of the block and the protocol

May 6, 2009 4

May 6, 2009 5

Maintain the invariant by tracking “state”

  Every cache block has an associated state
—  This will supplant the valid and dirty bits

  A cache controller updates the state of
blocks in response to processor and snoop
events and generates bus transactions

  Snoopy protocol
—  set of states
—  state-transition diagram
—  actions

Snoop

State Tag Data

° ° °

Cache Controller

Processor

Ld/St

MSI protocol

This is the simplest possible protocol, corresponding directly to the 3 options
in our invariant

  Invalid State: the data in the cache is not valid.

  Shared State: multiple caches potentially have copies of this data; they
will all have it in shared state. Memory has a copy that is consistent
with the cached copy.

  Dirty or Modified: only 1 cache has a copy. Memory has a copy that is
inconsistent with the cached copy. Memory needs to be updated when
the data is displaced from the cache or another processor wants to read
the same data.

5/6/09 6

Actions

Processor Actions:
  Load
  Store
  Eviction: processor wants to replace cache block

Bus Actions:
  GETS: request to get data in shared state
  GETX: request for data in modified state (i.e., eXclusive access)
  UPGRADE: request for exclusive access to data owned in shared state

Cache Controller Actions:
  Source Data: this cache provides the data to the requesting cache
  Writeback: this cache updates the block in memory

December 1, 2006 ©2006 Craig Zilles 7

8

Modified

Shared Invalid

MSI Protocol

May 6, 2009

May 6, 2009 9

The Cache Coherence Problem Solved

I/O devices

Memory

P 1

$ $ $

P 2 P 3

u :5
1

u :5 S

2

u :5 S

1. LD u
2. LD u

5. LD u
4. LD u

3. ST u

GETS GETS UPGRADE

I M :7
GETS

 :7

 u :7 S

Source Data

Real Cache Coherence Protocols

  Are more complex than MSI (see MESI and MEOSI)

  Some modern chips don’t use buses (too slow)
— Directory based: Alternate protocol doesn’t require

snooping

  But this gives you the basic idea.

December 1, 2006 ©2006 Craig Zilles 10

December 1, 2006 ©2006 Craig Zilles 11

A simple piece of code

unsigned counter = 0;

void *do_stuff(void * arg) {
 for (int i = 0 ; i < 200000000 ; ++ i) {
 counter ++;
 }
 return arg;
}

How long does this program take?

How can we make it faster?

adds one to counter

December 1, 2006 ©2006 Craig Zilles 12

A simple piece of code

unsigned counter = 0;

void *do_stuff(void * arg) {
 for (int i = 0 ; i < 200000000 ; ++ i) {
 counter ++;
 }
 return arg;
}

How long does this program take? Time for 200000000 iterations

How can we make it faster? Run iterations in parallel

adds one to counter

December 1, 2006 ©2006 Craig Zilles 13

unsigned counter = 0;

void *do_stuff(void * arg) {
 for (int i = 0 ; i < 200000000 ; ++ i) {
 counter ++;
 }
 return arg;
}

Exploiting a multi-core processor

#1 #2

Split for-loop across
multiple threads running
on separate cores

December 1, 2006 ©2006 Craig Zilles 14

How much faster?

December 1, 2006 ©2006 Craig Zilles 15

How much faster?

  We’re expecting a speedup of 2

  OK, perhaps a little less because of Amdahl’s Law
—  overhead for forking and joining multiple threads

  But its actually slower!! Why??

  Here’s the mental picture that we have – two processors, shared memory

counter

shared variable in memory

December 1, 2006 ©2006 Craig Zilles 16

This mental picture is wrong!

  We’ve forgotten about caches!
—  The memory may be shared, but each processor has its own L1 cache
—  As each processor updates counter, it bounces between L1 caches

Multiple bouncing
slows performance

December 1, 2006 ©2006 Craig Zilles 17

The code is not only slow, its WRONG!

  Since the variable counter is shared, we can get a data race

  Increment operation: counter++ MIPS equivalent:

  A data race occurs when data is accessed and manipulated by multiple
processors, and the outcome depends on the sequence or timing of these
events.
 Sequence 1 Sequence 2

Processor 1 Processor 2 Processor 1 Processor 2
lw $t0, counter lw $t0, counter
addi $t0, $t0, 1 lw $t0, counter
sw $t0, counter addi $t0, $t0, 1

 lw $t0, counter addi $t0, $t0, 1
 addi $t0, $t0, 1 sw $t0, counter
 sw $t0, counter sw $t0, counter

counter increases by 2 counter increases by 1 !!

lw $t0, counter
addi $t0, $t0, 1
sw $t0, counter

December 1, 2006 ©2006 Craig Zilles 18

What is the minimum value at the end of the program?

December 1, 2006 ©2006 Craig Zilles 19

Atomic operations

  You can show that if the sequence is particularly nasty, the final value of
counter may be as little as 2, instead of 200000000.

  To fix this, we must do the load-add-store in a single step
—  We call this an atomic operation
—  We’re saying: “Do this, and don’t allow other processors to

interleave memory accesses while doing this.”

  “Atomic” in this context means “as if it were a single operation”
—  either we succeed in completing the operation with no interruptions

or we fail to even begin the operation (because someone else was
doing an atomic operation)

—  Furthermore, it should be “isolated” from other threads.

  x86 provides a “lock” prefix that tells the hardware:
“don’t let anyone read/write the value until I’m done with it”
—  Not the default case (because it is slower!)

December 1, 2006 ©2006 Craig Zilles 20

What if we want to generalize beyond increments?

  The lock prefix only works for individual x86 instructions.
  What if we want to execute an arbitrary region of code without

interference?
—  Consider a red-black tree used by multiple threads.

December 1, 2006 ©2006 Craig Zilles 21

What if we want to generalize beyond increments?

  The lock prefix only works for individual x86 instructions.
  What if we want to execute an arbitrary region of code without

interference?
—  Consider a red-black tree used by multiple threads.

  Best mainstream solution: Locks
—  Implements mutual exclusion

•  You can’t have it if I have it, I can’t have it if you have it

December 1, 2006 ©2006 Craig Zilles 22

What if we want to generalize beyond increments?

  The lock prefix only works for individual x86 instructions.
  What if we want to execute an arbitrary region of code without

interference?
—  Consider a red-black tree used by multiple threads.

  Best mainstream solution: Locks
—  Implement “mutual exclusion”

•  You can’t have it if I have, I can’t have it if you have it

when lock = 0, set lock = 1, continue

lock = 0

December 1, 2006 ©2006 Craig Zilles 23

Lock acquire code

 High-level version MIPS version

unsigned lock = 0;

while (1) {
if (lock == 0) {

lock = 1;
break;

}
}

  What problem do you see with this?

spin: lw $t0, 0($a0)
 bne $t0, 0, spin
 li $t1, 1
 sw $t1, 0($a0)

&lock

December 1, 2006 ©2006 Craig Zilles 24

Race condition in lock-acquire

spin: lw $t0, 0($a0)
 bne $t0, 0, spin
 li $t1, 1
 sw $t1, 0($a0)

December 1, 2006 ©2006 Craig Zilles 25

Doing “lock acquire” atomically

  Make sure no one gets between load and store

  Common primitive: compare-and-swap (old, new, addr)
—  If the value in memory matches “old”, write “new” into memory

temp = *addr;
if (temp == old) {

*addr = new;
} else {

old = temp;
}

  x86 calls it CMPXCHG (compare-exchange)
— Use the lock prefix to guarantee itʼs atomicity

December 1, 2006 ©2006 Craig Zilles 26

Using CAS to implement locks

  Acquiring the lock:
 lock_acquire:
 li $t0, 0 # old
 li $t1, 1 # new

 cas $t0, $t1, lock

 beq $t0, $t1, lock_acquire # failed, try again

  Releasing the lock:
 sw $0, lock

December 1, 2006 ©2006 Craig Zilles 27

Conclusions

  When parallel threads access the same data, potential for data races
—  Even true on uniprocessors due to context switching

  We can prevent data races by enforcing mutual exclusion
—  Allowing only one thread to access the data at a time
—  For the duration of a critical section

  Mutual exclusion can be enforced by locks
—  Programmer allocates a variable to “protect” shared data
—  Program must perform: 0 → 1 transition before data access
—  1 → 0 transition after

  Locks can be implemented with atomic operations
—  (hardware instructions that enforce mutual exclusion on 1 data item)
—  compare-and-swap

•  If address holds “old”, replace with “new”

