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Cache Coherence and Atomic Operations in Hardware 

  Previously, we introduced multi-core parallelism. 
—  Today we’ll look at 2 things:  

1.  Cache coherence 
2.  Instruction support for synchronization. 

—  And some pitfalls of parallelization. 
—  And solve a few mysteries. 
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The Cache Coherence Problem 

—  Caches are critical to modern high-speed processors 

I/O devices 
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—  Multiple copies of a block can easily get inconsistent  
•  Processor writes; I/O writes 

—  Processors could see different values for u after event 3 



Cache Coherence Invariant 

  Each block of memory is in exactly one of these 3 states: 

1.   Uncached:  Memory has the only copy 

2.   Writable: Exactly 1 cache has the block and only that 
processor can write to it. 

3.   Read-only: Any number of caches can hold the block, and 
their processors can read it. 
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invariant | inˈve(ә)rēәnt | 
noun Mathematics 
a function, quantity, or property that remains unchanged when a specified 
transformation is applied. 



Snoopy Cache Coherence Schemes 

  Bus is a broadcast medium & caches know what they have 

  Cache controller “snoops” all transactions on the shared bus 
—  Relevant transaction if for a block it contains 
—  Take action to ensure coherence 

•  Invalidate or supply value 
Depends on state of the block and the protocol  
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Maintain the invariant by tracking “state” 

  Every cache block has an associated state 
—  This will supplant the valid and dirty bits 

  A cache controller updates the state of 
blocks in response to processor and snoop 
events and generates bus transactions 

  Snoopy protocol 
—  set of states 
—  state-transition diagram 
—  actions 

Snoop 
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MSI protocol 

This is the simplest possible protocol, corresponding directly to the 3 options 
in our invariant 

  Invalid State: the data in the cache is not valid. 

  Shared State: multiple caches potentially have copies of this data; they 
will all have it in shared state.  Memory has a copy that is consistent 
with the cached copy. 

  Dirty or Modified: only 1 cache has a copy. Memory has a copy that is 
inconsistent with the cached copy. Memory needs to be updated when 
the data is displaced from the cache or another processor wants to read 
the same data.  
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Actions 

Processor Actions: 
  Load 
  Store 
  Eviction: processor wants to replace cache block 

Bus Actions: 
  GETS: request to get data in shared state 
  GETX: request for data in modified state (i.e., eXclusive access) 
  UPGRADE: request for exclusive access to data owned in shared state 

Cache Controller Actions: 
  Source Data: this cache provides the data to the requesting cache 
  Writeback: this cache updates the block in memory 
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Modified 

Shared Invalid 

MSI Protocol 
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The Cache Coherence Problem Solved 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

u  :5 
1 

u  :5  S 

2 

u  :5  S 

1. LD u 
2. LD u 

5. LD u 
4. LD u 

3. ST u 

GETS GETS UPGRADE 

I M  :7 
GETS 

 :7 

 u :7  S 

Source Data 



Real Cache Coherence Protocols 

  Are more complex than MSI  (see MESI and MEOSI) 

  Some modern chips don’t use buses (too slow) 
— Directory based: Alternate protocol doesn’t require 

snooping 

  But this gives you the basic idea. 
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A simple piece of code 

unsigned counter = 0; 

void *do_stuff(void * arg) { 
  for (int i = 0 ; i < 200000000 ; ++ i) { 
     counter ++; 
  } 
  return arg; 
} 

How long does this program take?  

How can we make it faster?  

adds one to counter 
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A simple piece of code 

unsigned counter = 0; 

void *do_stuff(void * arg) { 
  for (int i = 0 ; i < 200000000 ; ++ i) { 
     counter ++; 
  } 
  return arg; 
} 

How long does this program take? Time for 200000000 iterations 

How can we make it faster? Run iterations in parallel 

adds one to counter 
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unsigned counter = 0; 

void *do_stuff(void * arg) { 
  for (int i = 0 ; i < 200000000 ; ++ i) { 
     counter ++; 
  } 
  return arg; 
} 

Exploiting a multi-core processor 

#1 #2 

Split for-loop across 
multiple threads running 
on separate cores 
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How much faster? 
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How much faster? 

  We’re expecting a speedup of 2 

  OK, perhaps a little less because of Amdahl’s Law 
—  overhead for forking and joining multiple threads 

  But its actually slower!! Why?? 

  Here’s the mental picture that we have – two processors, shared memory 

counter 

shared variable in memory 
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This mental picture is wrong! 

  We’ve forgotten about caches! 
—  The memory may be shared, but each processor has its own L1 cache 
—  As each processor updates counter, it bounces between L1 caches 

Multiple bouncing 
slows performance 
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The code is not only slow, its WRONG! 

  Since the variable counter is shared, we can get a data race 

  Increment operation: counter++     MIPS equivalent: 

  A data race occurs when data is accessed and manipulated by multiple 
processors, and the outcome depends on the sequence or timing of these 
events. 
  Sequence 1      Sequence 2 

Processor 1  Processor 2    Processor 1      Processor 2 
lw   $t0, counter      lw   $t0, counter 
addi $t0, $t0, 1        lw   $t0, counter 
sw   $t0, counter      addi $t0, $t0, 1 

   lw   $t0, counter      addi $t0, $t0, 1 
   addi $t0, $t0, 1    sw   $t0, counter 
   sw   $t0, counter      sw   $t0, counter 

counter increases by 2        counter increases by 1 !! 

lw   $t0, counter 
addi $t0, $t0, 1 
sw   $t0, counter 
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What is the minimum value at the end of the program? 
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Atomic operations 

  You can show that if the sequence is particularly nasty, the final value of 
counter may be as little as 2, instead of 200000000. 

  To fix this, we must do the load-add-store in a single step 
—  We call this an atomic operation 
—  We’re saying: “Do this, and don’t allow other processors to 

interleave memory accesses while doing this.” 

  “Atomic” in this context means “as if it were a single operation” 
—  either we succeed in completing the operation with no interruptions 

or we fail to even begin the operation (because someone else was 
doing an atomic operation) 

—  Furthermore, it should be “isolated” from other threads. 

  x86 provides a “lock” prefix that tells the hardware: 
“don’t let anyone read/write the value until I’m done with it” 
—  Not the default case (because it is slower!) 
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What if we want to generalize beyond increments? 

  The lock prefix only works for individual x86 instructions. 
  What if we want to execute an arbitrary region of code without 

interference? 
—  Consider a red-black tree used by multiple threads. 
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What if we want to generalize beyond increments? 

  The lock prefix only works for individual x86 instructions. 
  What if we want to execute an arbitrary region of code without 

interference? 
—  Consider a red-black tree used by multiple threads. 

  Best mainstream solution: Locks 
—  Implements mutual exclusion 

•  You can’t have it if I have it, I can’t have it if you have it 
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What if we want to generalize beyond increments? 

  The lock prefix only works for individual x86 instructions. 
  What if we want to execute an arbitrary region of code without 

interference? 
—  Consider a red-black tree used by multiple threads. 

  Best mainstream solution: Locks 
—  Implement “mutual exclusion”  

•  You can’t have it if I have, I can’t have it if you have it 

when lock = 0, set lock = 1, continue 

lock = 0 
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Lock acquire code 

 High-level version     MIPS version 

unsigned lock = 0; 

while (1) { 
if (lock == 0) { 

lock = 1; 
break; 

} 
} 

  What problem do you see with this? 

spin: lw  $t0, 0($a0) 
 bne  $t0, 0, spin 
 li  $t1, 1 
 sw  $t1, 0($a0) 

&lock 
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Race condition in lock-acquire 

spin: lw  $t0, 0($a0) 
 bne  $t0, 0, spin 
 li  $t1, 1 
 sw  $t1, 0($a0) 
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Doing “lock acquire” atomically 

  Make sure no one gets between load and store 

  Common primitive: compare-and-swap (old, new, addr) 
—  If the value in memory matches “old”, write “new” into memory 

temp = *addr;
if (temp == old) {

*addr = new;
} else {

old = temp;
}

  x86 calls it CMPXCHG (compare-exchange)
— Use the lock prefix to guarantee itʼs atomicity
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Using CAS to implement locks 

  Acquiring the lock: 
 lock_acquire: 
  li  $t0, 0   # old 
  li  $t1, 1   # new 

  cas $t0, $t1, lock 

  beq $t0, $t1, lock_acquire  # failed, try again 

  Releasing the lock: 
  sw  $0, lock 
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Conclusions 

  When parallel threads access the same data, potential for data races 
—  Even true on uniprocessors due to context switching 

  We can prevent data races by enforcing mutual exclusion 
—  Allowing only one thread to access the data at a time 
—  For the duration of a critical section 

  Mutual exclusion can be enforced by locks 
—  Programmer allocates a variable to “protect” shared data 
—  Program must perform:  0 → 1 transition before data access 
—                                      1 → 0 transition after    

  Locks can be implemented with atomic operations 
—  (hardware instructions that enforce mutual exclusion on 1 data item)  
—  compare-and-swap 

•  If address holds “old”, replace with “new” 


