
CS 173, Spring 2013

Handout on RSA for Honors Homework

To do the honors homework on RSA encryption, you should read this handout and also pp.
131-134 from Liebeck, A Concise Introduction to Pure Mathematics, 2nd edition, Chapman
and Hall, 2006.

1 Extended Euclidean algorithm

Suppose that we have two integers p and q, whose gcd is g. Then the equation g = px+qy has
integer solutions. We can use an extension of the Euclidean algorithm to find one solution.

Remember, in the Euclidean algorithm, we take our original integers p and q (assume p ≥ q)
and make a sequence of integers p = r1, q = r2, r3, r4, . . . rn such that

gcd(p, q) = gcd(r1, r2) = gcd(r2, r3) = gcd(r3, r4) . . . = gcd(rn−1, rn)

Each integer in this sequence is produced by dividing the two previous integers and taking the
remainder. This gives us a series of integer division equations of the form rk−1 = mrk +rk+1.
In each of these, we could solve for rk+1: rk+1 = rk−1 − mrk.

For example, in computing the gcd of 5817 and 1428 (which is 21), we find that

5817 = 4 · 1428 + 105

1428 = 13 · 105 + 63

105 = 1 · 63 + 42

63 = 1 · 42 + 21

So

105 = 5817 − 4 · 1428

63 = 1428 − 13 · 105

42 = 105 − 63

21 = 63 − 42

Now, to solve the equation 21 = 5817x + 1428y, we use the above equations in reverse
order. Start with the bottom equation, which expresses the gcd in terms of the smallest two
elements in the sequence:
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21 = 63 − 42

Get rid of the smaller number on the righthand side by substituting in the righthand side of
the previous equation:

21 = 63 − (105 − 63) = 2 · 63 − 105

Do this again, to get rid of 63:

21 = 2 · (1428 − 13 · 105) − 105 = 2 · 1428 − 27 · 105

And again to remove 105:

21 = 2 · 1428 − 27 · (5817 − 4 · 1428) = −27 · 5817 + 110 · 1428

So our final result: 21 = −27 · 5817 + 110 · 1428

2 Successive Squares

Suppose that we want to compute a number like 682 mod 13. Since the answer is between 0
and 12, it seems inefficient to get it by computing a really huge intermediate quantity like
682. And, in fact, it’s possible to compute it easily by hand.

To see how the trick works, let’s represent the exponent as the sum of powers of two (as in
base-2 numbers). 82 = 64 + 16 + 2. So

682 = 664
· 616

· 62

We can raise 6 to a power of two by successive squaring. Recall that if a ≡ b (mod m) then
an ≡ bn (mod m), for any natural number n. So, each time we square, we can convert the
result to a handy (i.e. small) integer that’s equivalent mod 13.

In this case
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62 = (−3) (mod 13)

64 = 9 (mod 13)

68 = 3 (mod 13)

616 = 9 (mod 13)

632 = 3 (mod 13)

664 = 9 (mod 13)

So then

682 = 664
· 616

· 62
≡ 9 · 9 · (−3) (mod 13)

But then 9 · −3 = −27 ≡ −1 (mod 13). So 9 · 9 · −3 is congruent to 9 · (−1), which is
congruent to 4, mod 13. So 682 ≡ 4 (mod 13).

3 RSA “Encryption”

The RSA function was proposed as a “public-key encryption” scheme in 1977. However, the
original RSA scheme, or “textbook RSA” as it is now known, is by itself not a sufficiently
secure encryption scheme (since, for instance, it produces the same ciphertext each time the
same message is encoded using the same key – which would let an eavesdropper infer that
a message is being sent again, even though she won’t necessarily learn its contents). But
variants which do rely on the RSA (along with some random padding) form the basis of
a popular encryption standard today. Below we discuss only the original (textbook) RSA
encoding and decoding schemes.

When Liebeck (page 133) explains how to decode a message, you don’t really have to un-
derstand all of the first couple paragraphs. The short version is:

Decoding and encoding are done the same way. To encode x, compute y = xe mod N to
decode y, compute x = xd mod N . The trick is to find the d that goes with a particular e.

Suppose you know N and e and p and q. Suppose we set z = (p − 1)(q − 1). For reasons
that you don’t have to understand (that’s the reference to proposition 15.3 in Liebeck), you
can find d by solving the equation

1 = de + kz
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You can do this using the method in section 1 above. (Thus RSA can be broken if the prime
factorization of N can be efficiently computed.)

For Liebeck’s example (paragraph 2), e = 11 and z = 2160. So he sets up the equation:

1 = d · 11 + k · 2160

A solution to it is:

1 = 1571 · 11 − 8 · 2160

So 1571 is a suitable value for d.

Sometimes if you follow this procedure, you end up with a negative value for the coefficient
of e. E.g.

1 = mz − fe

Where all the variables are positive. −f is no good as a value for d.

Notice that this equation has lots of solutions. In particular, another one is

1 = (m − e)z + (z − f)e
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