# CS 173, Spring 2013 <br> Handout on RSA for Honors Homework 

To do the honors homework on RSA encryption, you should read this handout and also pp. 131-134 from Liebeck, A Concise Introduction to Pure Mathematics, 2nd edition, Chapman and Hall, 2006.

## 1 Extended Euclidean algorithm

Suppose that we have two integers $p$ and $q$, whose gcd is $g$. Then the equation $g=p x+q y$ has integer solutions. We can use an extension of the Euclidean algorithm to find one solution.

Remember, in the Euclidean algorithm, we take our original integers $p$ and $q$ (assume $p \geq q$ ) and make a sequence of integers $p=r_{1}, q=r_{2}, r_{3}, r_{4}, \ldots r_{n}$ such that

$$
\operatorname{gcd}(p, q)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\operatorname{gcd}\left(r_{2}, r_{3}\right)=\operatorname{gcd}\left(r_{3}, r_{4}\right) \ldots=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)
$$

Each integer in this sequence is produced by dividing the two previous integers and taking the remainder. This gives us a series of integer division equations of the form $r_{k-1}=m r_{k}+r_{k+1}$. In each of these, we could solve for $r_{k+1}: r_{k+1}=r_{k-1}-m r_{k}$.

For example, in computing the gcd of 5817 and 1428 (which is 21 ), we find that

$$
\begin{aligned}
5817 & =4 \cdot 1428+105 \\
1428 & =13 \cdot 105+63 \\
105 & =1 \cdot 63+42 \\
63 & =1 \cdot 42+21
\end{aligned}
$$

So

$$
\begin{aligned}
105 & =5817-4 \cdot 1428 \\
63 & =1428-13 \cdot 105 \\
42 & =105-63 \\
21 & =63-42
\end{aligned}
$$

Now, to solve the equation $21=5817 x+1428 y$, we use the above equations in reverse order. Start with the bottom equation, which expresses the gcd in terms of the smallest two elements in the sequence:
$21=63-42$

Get rid of the smaller number on the righthand side by substituting in the righthand side of the previous equation:
$21=63-(105-63)=2 \cdot 63-105$
Do this again, to get rid of 63 :
$21=2 \cdot(1428-13 \cdot 105)-105=2 \cdot 1428-27 \cdot 105$
And again to remove 105:
$21=2 \cdot 1428-27 \cdot(5817-4 \cdot 1428)=-27 \cdot 5817+110 \cdot 1428$

So our final result: $21=-27 \cdot 5817+110 \cdot 1428$

## 2 Successive Squares

Suppose that we want to compute a number like $6^{82} \bmod 13$. Since the answer is between 0 and 12 , it seems inefficient to get it by computing a really huge intermediate quantity like $6^{82}$. And, in fact, it's possible to compute it easily by hand.

To see how the trick works, let's represent the exponent as the sum of powers of two (as in base-2 numbers). $82=64+16+2$. So

$$
6^{82}=6^{64} \cdot 6^{16} \cdot 6^{2}
$$

We can raise 6 to a power of two by successive squaring. Recall that if $a \equiv b(\bmod m)$ then $a^{n} \equiv b^{n}(\bmod m)$, for any natural number $n$. So, each time we square, we can convert the result to a handy (i.e. small) integer that's equivalent mod 13.

In this case

$$
\begin{aligned}
6^{2} & =(-3) \quad(\bmod 13) \\
6^{4} & =9 \quad(\bmod 13) \\
6^{8} & =3(\bmod 13) \\
6^{16} & =9(\bmod 13) \\
6^{32} & =3(\bmod 13) \\
6^{64} & =9(\bmod 13)
\end{aligned}
$$

So then

$$
6^{82}=6^{64} \cdot 6^{16} \cdot 6^{2} \equiv 9 \cdot 9 \cdot(-3) \quad(\bmod 13)
$$

But then $9 \cdot-3=-27 \equiv-1(\bmod 13)$. So $9 \cdot 9 \cdot-3$ is congruent to $9 \cdot(-1)$, which is congruent to $4, \bmod 13$. So $6^{82} \equiv 4(\bmod 13)$.

## 3 RSA "Encryption"

The RSA function was proposed as a "public-key encryption" scheme in 1977. However, the original RSA scheme, or "textbook RSA" as it is now known, is by itself not a sufficiently secure encryption scheme (since, for instance, it produces the same ciphertext each time the same message is encoded using the same key - which would let an eavesdropper infer that a message is being sent again, even though she won't necessarily learn its contents). But variants which do rely on the RSA (along with some random padding) form the basis of a popular encryption standard today. Below we discuss only the original (textbook) RSA encoding and decoding schemes.

When Liebeck (page 133) explains how to decode a message, you don't really have to understand all of the first couple paragraphs. The short version is:

Decoding and encoding are done the same way. To encode $x$, compute $y=x^{e} \bmod N$ to decode $y$, compute $x=x^{d} \bmod N$. The trick is to find the $d$ that goes with a particular $e$.

Suppose you know $N$ and $e$ and $p$ and $q$. Suppose we set $z=(p-1)(q-1)$. For reasons that you don't have to understand (that's the reference to proposition 15.3 in Liebeck), you can find $d$ by solving the equation

$$
1=d e+k z
$$

You can do this using the method in section 1 above. (Thus RSA can be broken if the prime factorization of $N$ can be efficiently computed.)

For Liebeck's example (paragraph 2), $e=11$ and $z=2160$. So he sets up the equation:

$$
1=d \cdot 11+k \cdot 2160
$$

A solution to it is:

$$
1=1571 \cdot 11-8 \cdot 2160
$$

So 1571 is a suitable value for $d$.
Sometimes if you follow this procedure, you end up with a negative value for the coefficient of $e$. E.g.

$$
1=m z-f e
$$

Where all the variables are positive. $-f$ is no good as a value for $d$.
Notice that this equation has lots of solutions. In particular, another one is

$$
1=(m-e) z+(z-f) e
$$

