
CS 173, Fall 2012

Honors Homework 1

Due by 4pm on Friday October 12th. Put your homework into the CS 173 honors dropbox
in the basement of Siebel. The dropboxes are located just east of the lounge area with the
big windows. If you get to the candy/soda machines, you’ve gone too far east.

Your homework must be formatted using LaTeX. Please turn in hardcopy of the LaTeX
output. (Don’t turn in LaTeX source.) Supporting materials such source listings of programs
need not (and probably should not) be formatted!

For this homework, you’ll need to read pp. 131-134 from four pages from Liebeck, A Concise
Introduction to Pure Mathematics, 2nd edition, Chapman and Hall, 2006. Scans of these
are available on the moodle sites for both lectures. Read those, together with the following
background material. Then do the five problems at the end.

1 Extended Euclidean algorithm

Suppose that we have two integers p and q, whose gcd is g. Then the equation g = px+qy has
integer solutions. We can use an extension of the Euclidean algorithm to find one solution.

Remember, in the Euclidean algorithm, we take our original integers p and q (assume p ≥ q)
and make a sequence of integers p = r1, q = r2, r3, r4, . . . rn such that

gcd(p, q) = gcd(r1, r2) = gcd(r2, r3) = gcd(r3, r4) . . . = gcd(rn−1, rn)

Each integer in this sequence is produced by dividing the two previous integers and taking the
remainder. This gives us a series of integer division equations of the form rk−1 = mrk +rk+1.
In each of these, we could solve for rk+1: rk+1 = rk−1 − mrk.

For example, in computing the gcd of 5817 and 1428 (which is 21), we find that

5817 = 4 · 1428 + 105

1428 = 13 · 105 + 63

105 = 1 · 63 + 42

63 = 1 · 42 + 21
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So

105 = 5817 − 4 · 1428

63 = 1428 − 13 · 105

42 = 105 − 63

21 = 63 − 42

Now, to solve the equation 21 = 5817x + 1428y, we use the above equations in reverse
order. Start with the bottom equation, which expresses the gcd in terms of the smallest two
elements in the sequence:

21 = 63 − 42

Get rid of the smaller number on the righthand side by substituting in the righthand side of
the previous equation:

21 = 63 − (105 − 63) = 2 · 63 − 105

Do this again, to get rid of 63:

21 = 2 · (1428 − 13 · 105) − 105 = 2 · 1428 − 27 · 105

And again to remove 105:

21 = 2 · 1428 − 27 · (5817 − 4 · 1428) = −27 · 5817 + 110 · 1428

So our final result: 21 = −27 · 5817 + 110 · 1428

2 Successive Squares

Suppose that we want to compute a number like 682 mod 13. Since the answer is between 0
and 12, it seems inefficient to get it by computing a really huge intermediate quantity like
682. And, in fact, it’s possible to compute it easily by hand.

To see how the trick works, let’s represent the exponent as the sum of powers of two (as in
base-2 numbers). 82 = 64 + 16 + 2. So

682 = 664
· 616

· 62

We can raise 6 to a power of two by successive squaring. Recall that if a ≡ b (mod m) then
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an ≡ bn (mod m), for any natural number n. So, each time we square, we can convert the
result to a handy (i.e. small) integer that’s equivalent mod 13.

In this case

62 = (−3) (mod 13)

64 = 9 (mod 13)

68 = 3 (mod 13)

616 = 9 (mod 13)

632 = 3 (mod 13)

664 = 9 (mod 13)

So then

682 = 664
· 616

· 62
≡ 9 · 9 · (−3) (mod 13)

But then 9 · −3 = −27 ≡ −1 (mod 13). So 9 · 9 · −3 is congruent to 9 · (−1), which is
congruent to 4, mod 13. So 682 ≡ 4 (mod 13).

3 RSA “Encryption”

The RSA function was proposed as a “public-key encryption” scheme in 1977. However, the
original RSA scheme, or “textbook RSA” as it is now known, is by itself not a sufficiently
secure encryption scheme (since, for instance, it produces the same ciphertext each time the
same message is encoded using the same key – which would let an eavesdropper infer that
a message is being sent again, even though she won’t necessarily learn its contents). But
variants which do rely on the RSA (along with some random padding) form the basis of
a popular encryption standard today. Below we discuss only the original (textbook) RSA
encoding and decoding schemes.

When Liebeck (page 133) explains how to decode a message, you don’t really have to un-
derstand all of the first couple paragraphs. The short version is:

Decoding and encoding are done the same way. To encode x, compute y = xe mod N to
decode y, compute x = xd mod N . The trick is to find the d that goes with a particular e.

Suppose you know N and e and p and q. Suppose we set z = (p − 1)(q − 1). For reasons
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that you don’t have to understand (that’s the reference to proposition 15.3 in Liebeck), you
can find d by solving the equation

1 = de + kz

You can do this using the method in section 1 above. (Thus RSA can be broken if the prime
factorization of N can be efficiently computed.)

For Liebeck’s example (paragraph 2), e = 11 and z = 2160. So he sets up the equation:

1 = d · 11 + k · 2160

A solution to it is:

1 = 1571 · 11 − 8 · 2160

So 1571 is a suitable value for d.

Sometimes if you follow this procedure, you end up with a negative value for the coefficient
of e. E.g.

1 = mz − fe

Where all the variables are positive. −f is no good as a value for d.

Notice that this equation has lots of solutions. In particular, another one is

1 = (m − e)z + (z − f)e

4 Problems

Problem 1

Suppose you know that pq = 52907 and (p − 1)(q − 1) = 52440. Find the primes p and q

using the method at the bottom of p. 134 of Liebeck. Show your work.

Problem 2

Use your favorite programming language to write a short program to compute xn (mod k)
by repeated squaring.
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We need to be able to understand how your code works and to verify that it does use the
repeated squaring method. So keep your code simple and comment it well. Attach the source
code for your program, as well as a printout showing the output of the program on several
examples with large (e.g. 3-4 digit) numbers.

Test your code against the examples numbers at the top of Liebeck p. 134. Identify which
of Liebeck’s calculations is wrong.

Problem 3

For this problem, you don’t have to show all the details of your work. Just show the key
constants and some sample work.

(a) Encode the message CORNFIELDS using the public key (N, e) = (371, 257).

(b) Figure out what d must be and decipher the following message. What character code is
used for a blank space in this message?

96, 140, 4, 135, 135, 4, 300, 320, 50, 72, 320, 140, 46

Problem 4

Agent 86 has learned that Dr. X is preparing a cunning plan to get an unsuitable sport
added to the Olympics. The message containing the name of the sport was delivered to your
hotel room by a shadowy stranger in a blue cloak. Agent 86 has emailed what was supposed
to be the decoding key for this message. However, he was somewhat distracted talking to
customer service about his malfunctioning shoephone, and so he sent you the encoding key
rather than the decoding key. The encoding key is (N, e) = (2627, 61) and his message is

224, 2151, 1424, 462, 2047, 846, 2227, 2005, 1095, 1147

Figure out the decoding key and decrypt the message.

Problem 5

An important parameter associated with a given number N is how many numbers in the
range [1, N ] are co-prime with N (note that 1 is co-prime with N since gcd(1, N) = 1). This
problem has a relatively simple answer, if we know the prime factorization of N .

Suppose N = pq for two distinct primes p and q. Any number that is not co-prime with N

should have p or q as one of its factors. So we can only count how many numbers in the
range [1, N ] are not co-primes with N , by counting the number of numbers with p or q as a
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factor. Use this observation to answer the following.

1. How many numbers are there in the range [1, N ] that are multiples of neither p nor of
q (i.e., are co-prime with N)?

[Hint: You can follow the steps below.

− How many multiples of p are there in [1, N ]? And how many multiples of q are
there in [1, N ]?

− How many of these are multiples of both p and q?

− How many numbers are there in the range [1, N ] that are multiples of either p or
q (or both)? ]

2. How is this number related to the RSA scheme?

3. Now consider N ′ = p2q. Follow the above steps for N ′ instead of N , and find out how
many numbers are there in the range [1, N ′] that are co-prime with N ′. (Note that
again, we need to count how many numbers are multiples of either p or q, but this
time in the range [1, N ′].) How does this number relate to the answer to the previous
question?

[Bonus] Can you find a general formula for how many numbers in the range [1, N ] are co-
prime with N , where N has a prime-factorization N = pd1

1 · · · pdt

t (p1 < · · · < pt are primes
and di > 0)? (Hint: It might be easier to first consider the cases with t = 3, 4, . . . and all
di = 1.)

5 Fun Fact: Sieve of Eratosthenes

The sieve of Eratosthenes is an algorithm to produce a list of all prime numbers in the
range [2, n], given a number n as input. You can read the first two sections from http:

//en.wikipedia.org/wiki/Sieve of Eratosthenes to understand how it works.
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